
Calypsi C compiler guide for the 68000
Release 3.5.1

Håkan Thörngren

Jan 04, 2022

Contents

1 Introduction 1
1.1 Using this guide . 1
1.2 Copyright notice . 1
1.3 Disclaimer . 2

2 Installation 3
2.1 macOS . 3
2.2 Debian Linux . 4
2.3 Arch and Manjaro Linux . 4
2.4 Windows . 5
2.5 Using multiple versions . 5

3 Getting started 7
3.1 C language . 7
3.2 File extensions . 7
3.3 Building applications . 8
3.4 Configuring . 9
3.5 Low level control . 11

4 Data storage 13
4.1 Ways to store data . 13
4.2 Address spaces . 14

5 Placing code and data 17
5.1 Sections . 17
5.2 Data initialization . 19
5.3 Stack . 20

6 C language 21
6.1 Overview . 21
6.2 Extensions . 21

7 Efficient coding 23
7.1 Data types . 23
7.2 Use prototypes . 24
7.3 Use tables . 25

i

8 Running the compiler 27
8.1 Basic invocation . 27
8.2 Include search path . 28
8.3 Compiler output . 28
8.4 Diagnostics . 30
8.5 Command line options . 31

9 Data representation 39
9.1 Basic types . 39
9.2 Structure types . 42
9.3 Union types . 42
9.4 Enumeration types . 43
9.5 Type qualifiers . 43
9.6 Type definitions . 46
9.7 Alignment . 46

10 Extended attributes 47
10.1 Overview . 47
10.2 Using attributes . 47
10.3 Attribute reference . 48

11 Pragma directives 51
11.1 Pragma directives reference . 51

12 Intrinsic functions 55
12.1 Intrinsic functions reference . 55

13 Preprocessor 59
13.1 Overview . 59

14 Section reference 63
14.1 Section overview . 63
14.2 Sections used by the compiler . 64

15 Runtime library 67
15.1 Design considerations . 67
15.2 Using the library . 68
15.3 Provided library files . 68
15.4 Stub interface . 69
15.5 Examine use of library . 72
15.6 Library on a diet . 72
15.7 System startup . 74
15.8 Time and date . 75

16 The optimizer 77
16.1 Overview . 77
16.2 Function inlining . 78
16.3 Cross call . 80

17 Assembly language interface 81
17.1 Intrinsic functions . 81
17.2 Assembly functions . 81
17.3 Calling convention . 82

18 Assembler 85
18.1 Overview . 85

ii

18.2 Syntax . 85
18.3 Sections . 86
18.4 Expressions . 88
18.5 Numeric constants . 88
18.6 Location counter . 89
18.7 Local labels . 89
18.8 Directives . 90
18.9 Relocations . 93
18.10Macro language . 95

19 Running the assembler 97
19.1 Basic invocation . 97
19.2 Include search path . 98
19.3 Assembler output . 98
19.4 Command line options . 100

20 Linker 105
20.1 Running the linker . 105
20.2 Memory . 106
20.3 Linker rules file . 106
20.4 Linker list files . 109
20.5 Output formats . 113
20.6 More on linker rules . 114
20.7 Command line options . 114

21 Librarian 119
21.1 Creating a library . 119
21.2 File format . 119
21.3 Command line options . 119

22 Debugger introduction 121
22.1 Command line debugger . 121
22.2 Running the debugger . 122
22.3 Command line options . 122

23 Console command line 127
23.1 Command structure . 127
23.2 A simple session . 128

24 Remote debugging 133
24.1 Serial port . 133

25 Visual Studio Code 135
25.1 Installation . 136
25.2 Project setup . 136
25.3 Building . 137
25.4 Running the debugger . 137

26 Lua scripting 141
26.1 Running a script . 141
26.2 Lua environments . 142
26.3 Command interpreters . 142
26.4 Console commands . 143
26.5 MI commands . 143
26.6 Adapted MI commands . 143

iii

26.7 Choosing a command set . 143
26.8 Arrays and Lua . 143
26.9 Debugger API . 143

27 Lua data types reference 145
27.1 Address . 145
27.2 Adapted MI functions . 145

28 Lua function reference 147
28.1 Execution . 147
28.2 Breakpoint . 147

Index 149

iv

CHAPTER 1

Introduction

Welcome to the Calypsi C compiler tool chain for the 68000. This guide provides reference information
that can help you use the compiler tool chain suite in the best way for your application needs. There are also
suggestions on coding techniques and information about the design choices and implemenation considerations
made in producing this C compiler.

1.1 Using this guide

This guide is aimed for those programming the 68000 and provides in depth reference information on how
to use the the Calypsi C compiler tool chain.

You should have a working knowledge of:

• The 68000 architecture

• The C programming language

• The operating system of your computer

• The text editor or IDE of your choice

1.2 Copyright notice

Copyright Håkan Thörngren.

This document is under copyright and may not be reproduced without the written consent from Håkan Thörn-
gren.

The Calypsi C compiler tool chain is available under a license and must be used in accordance with the terms
of the license.

The C library runtime is to a large based on NuttX which is mainly under the Apache license which can be
found in "Licenses/C Library License" in the installation directory. The assembly written parts of the

1

Calypsi C compiler guide for the 68000, Release 3.5.1

runtime is covered by the license of the Calypsi C compiler tool chain. They do not impose any royalties or
obligations as long as they are used together with this product.

The Calypsi C compiler tool chain uses several open source components internally. These licenses can be
found in the "Licenses/Internal component licenses/" directory in the installation directory. These do not
carry any obligations over to any application built with the Calypsi C compiler tool chain.

The 64-bit floating point library routines are implemented using the Berkeley SoftFloat library which is cov-
ered by a license that can be found in Licenses/Berkeley SoftFloat License in the installation directory.
This license only applies when you are using the long double type or the --64bit-doubles command line
option. This license carry the obligation to include its copyright and license with a product makes use of the
Berkeley SoftFloat library.

Note: The run-time library does not contain any GPL licensed code and does not impose any royalty. Some
components as outlined above do carry some obligations, e.g. to mention that they are included in a final
product.

1.3 Disclaimer

What is described in this document is subject to change without notice and does not represent any com-
mitments. While what is described in this document is believed to be accurate, Håkan Thörngren takes no
responsibility for any errors or omissions.

In no event shall Håkan Thörngren, its employees, its contractors, or the authors of this document be liable
for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost
profits, fees, or expenses of any nature or kind.

2 Chapter 1. Introduction

CHAPTER 2

Installation

This section contains installation information for supported platforms.

2.1 macOS

On macOS the provided installer installs the tools under /usr/local. Simply double click on the installation
package to install the software.

After the installation you will find the installed files in a directory named /usr/local/calypsi-68000-3.5.1,
where 3.5.1 is the version number installed. As the version number changes with every release of the Calypsi
C compiler tool chain, a previous installation will not get overwritten.

In order to make it easy to invoke the tools, the installer script will add symbolic links from /usr/local/
bin to the installation directory. This means that you only need to ensure that /usr/local/bin is in your
PATH environment variable to use the most recent installed version of the Calypsi C compiler tool chain. The
installer will also create a symbolic link from /usr/local/lib/calypsi-68000 to the installation directory
which makes it easy to refer to the installation without having to specify a version number.

2.1.1 Setting the PATH

To set PATH environment variable on macOS, edit the /etc/paths file and add /usr/local/bin to it.

2.1.2 Uninstalling

To uninstall the Calypsi C compiler tool chain, simply run the uninstall script:

$ sudo /usr/local/lib/calypsi-68000-3.5.1/uninstall

This will remove the installation and the links in /usr/local/bin.

3

Calypsi C compiler guide for the 68000, Release 3.5.1

2.2 Debian Linux

The Debian package (.deb extension) is built and tested on Ubuntu 20.04. It may also be possible to install
on an other Debian based systems, but this has not been tested.

The package can be installed from the command line using:

$ sudo gdebi calypsi-nut-3.5.1.deb

If you do not have gdebi installed already, install it using:

$ sudo apt install gdebi-core

This will install the Calypsi C compiler tool chain in /usr/local/lib/calypsi-68000-3.5.1, where 3.5.1 is
the version number installed.

In order to make it easy to invoke the tools, the installer script will add symbolic links from /usr/local/bin
to the installation directory. This means that you only need to ensure that /usr/local/bin is in your PATH
environment variable to use the most recent installed version of the Calypsi tool chain. The installer will also
create a symbolic link from /usr/local/lib/calypsi-68000 to the installation directory which makes it easy
to refer to the installation without having to specify a version number.

It is also possible to install using dpkg in the following way:

$ sudo dpkg -i calypsi-nut-3.5.1.deb

This may fail if there are package dependencies that need to be installed first. In this case the output will give
some advice on what you need to do before you can retry the installation.

2.2.1 Uninstalling

To uninstall the Calypsi C compiler tool chain, use the package command dpkg with the -r remove flag:

$ sudo dpkg -r calypsi-nut

2.3 Arch and Manjaro Linux

Manjaro is based on Arch Linux and uses pacman. The package file can be installed from the command line
using:

$ sudo pacman -U calypsi-68000-3.5.1-x86_64.pkg.tar.zst

This will install the Calypsi C compiler tool chain in /usr/local/lib/calypsi-68000-3.5.1, where 3.5.1 is
the version number installed.

In order to make it easy to invoke the tools, the installer script will add symbolic links from /usr/local/bin
to the installation directory. This means that you only need to ensure that /usr/local/bin is in your PATH
environment variable to use the most recent installed version of the Calypsi tool chain. The installer will also
create a symbolic link from /usr/local/lib/calypsi-68000 to the installation directory which makes it easy
to refer to the installation without having to specify a version number.

4 Chapter 2. Installation

Calypsi C compiler guide for the 68000, Release 3.5.1

2.3.1 Uninstalling

To uninstall the Calypsi C compiler tool chain, use the package command pacman with the -R remove flag:

$ sudo pacman -R calypsi-68000

2.4 Windows

On Windows the provided installer installs the tools in the default folder for program files, typically
C:\Program Files (x86). Simply double click on the .msi installer to install the software.

After the installation you will find the installed files in the C:\Program Files (x86)/calypsi-68000 folder.

2.4.1 Setting the PATH

In order to use the tools you will typically need to add C:\Program Files (x86)/calypsi-68000\bin to the
search path. One way of doing this is to type path as a search text in the start menu, and select the suggestion
Edit the system environment variables - control panel.

2.4.2 Uninstalling

To uninstall the Calypsi C compiler tool chain, simply bring up Add remove programs and select the software
you want to install from the list of installed programs.

2.5 Using multiple versions

When upgrading to a newer version of the software product on a Linux operating system, the packagemanager
will remove any previous version of the installed software. This does not apply to macOS where previously
installed versions are left behind.

Sometimes it can be useful to have access to multiple versions of the software product. This can be done by
copying the entire installation directory hierarchy to another location.

You can use such copied installation by locally adjusting the PATH environment variable, or by using an explicit
path in the command line.

To remove a copy of the product that has been copied elsewhere, simply delete it. Do not run the uninstall
script as it will affect the copy installed the normal way.

Note: The license of the software product is used under a license which states the terms under which you
can copy the product.

2.4. Windows 5

Calypsi C compiler guide for the 68000, Release 3.5.1

6 Chapter 2. Installation

CHAPTER 3

Getting started

This chapter gives an overview how to use the compiler and the related tools.

3.1 C language

The C language is one of the most commonly used programming language in the world. While C is ideally
suited for programming close to the hardware, it is also useful as a generic high-level programming language.
C provides a useful set of simple but fairly powerful abstractions over a generic target machine which provide
you with good control and make it possible to produce efficient applications.

The C language variant implemented here is the ISO/IEC 9899:1999 standard, which is often called the C99
standard. In this guide it is referred to as Standard C.

3.1.1 Cross compiler

The compiler is a cross compiler which means that it runs on a modern workstation computer, but produces
applications intended to execute on a more constrained target machine.

3.1.2 Supported devices

The Calypsi C compiler tool chain supports the Motorola 68000.

3.2 File extensions

The following table shows the file extensions normally used with the Calypsi C compiler tool chain.

7

Calypsi C compiler guide for the 68000, Release 3.5.1

Table 3.1: File extensions
Extension Purpose
.c C source
.h C header source
.s Assembler source
.o ELF/DWARF object file
.a Library (collection of object files)
.lst List file
.scm Linker rules
.elf ELF/DWARF output (executable file)
.hex Module page as raw data (16-bit words)
.raw Raw output
.pgz Foenix binary format

3.3 Building applications

You can build your applications from source files and libraries.

Source files are either written in C or assembly language which are compiled into object files. C source files
are compiled with cc68k and assembly source files are compiled with as68k.

A library is a collection of object files that can be produced using the nlib librarian tool. This essentially
combines object files together with an index, to a single file. The provided C runtime library is an example of
such library. In addition you can use other libraries from third parties.

The ln68k linker takes object files, libraries and placement rules as input. Based on the inputs the linker puts
together the executable application.

3.3.1 Compiler

The command line interface of the compiler takes a single source file and produces an object file:

$ cc68k source.c

The object file produced will have the same base name as the input, but using the .o file extension.

Note: You will normally need use various command line options to the compiler, to select actual CPU or
runtime models, among other things.

3.3.2 Assembler

For C projects you are not required to know assembly language. The whole idea with C is to allow you to
write programs easier and be able to move between different architectures.

In certain situations you may want to provide very specific target code or need control at a very deep level,
or to code some very critical routine using specific code. The assembler makes it possible to do this.

The command line interface of the assembler looks very much the same as for the compiler. The main differ-
ence is that the file extension differs:

8 Chapter 3. Getting started

Calypsi C compiler guide for the 68000, Release 3.5.1

$ as68k source.s

The produces object file has the same .o extension as with the compiler.

Note: You may need to provide a --core option with the assembler to make it recognize the exact set of
machine instructions of the target you are using.

3.3.3 Linker

The linker is used as a separate final step to bring all object files and libraries together into an executable
application.

In order to do this the linker needs a rules file needed that describes the memory system and provides place-
ment rules for code and data. In this file you can also specify the size of the stack and the heap.

From the command line you can run the linker as:

$ ln68k myfile1.o myfile2.o clib-68000-lc-sd.a rules.scm

This is a rather simplified, but fully possible command line. The linker will produce and output aout.elf if
executed this way that contains the application as an ELF binary.

There are many ways to tailor the output:

• Using hex output, in either Intel HEX or Motorola S-record file format

• RAW output, which is just plain binary output of a single memory area

!additionalLinkerOutputs

• With the --debug option you can include DWARF debugging information in the ELF executable.

The linker can also produce a list file, optionally with cross reference information. This makes it possible to
see how much memory is used, where things are placed in memory and also what has been included from
libraries and why it was included.

3.4 Configuring

You will most likely want to consider and tune code generation of the compiler using a number of different
parameters. These are specified using command line options.

The most basic settings to consider are:

• The actual core (--core) being used. This controls the exact instruction set.

• The data model which affects how data are placed in memory and accessed

• Size of the double floating point type

• Optimization settings

• Certain specific runtime environment settings, e.g. ability of the printf formatter

3.4.1 Core

The Calypsi C compiler tool chain currently supports the base 68000 variant.

3.4. Configuring 9

Calypsi C compiler guide for the 68000, Release 3.5.1

3.4.2 Code model

The code model controls which instruction is used to make a function call.

3.4.3 Data model

The data model controls where global data is located by default.

The available data models are Small, Large and Far-only. If not specified the compiler uses the Small data
model by default.

All data models are capable of addressing the entire 32 bits address space. The difference between the data
models is in whether register A4 is used as a base pointer.

Small

In the Small data model register A4 is used as a base pointer to a 64K area where static and global variables
are allocated. This typically saves two bytes for each each instruction that access such variable.

You can still allocate larger objects outside this area by using the Far attribute.

Large

In the Large data model variables can be allocated anywhere in the address space and the compiler will use
32-bits absolute addressing which typically results in large code compared to the Small data model.

The base register A4 is still regarded as a base pointer, but is left unused. This is intended to allow writing
library code that can be called from other applications that use A4 as its base register.

Far-Only

The Far-Only data model is similar to the Large data model, but it treats register A4 as a general purpose
register that can be used as any other address register.

Table 3.2: Data models
Data model Default pointer size Default size limit
Small 32 bits 64K bytes
Large 32 bits 4G bytes
Far-Only 32 bits 4G bytes

3.4.4 Size of double

The double floating point type uses the IEEE 754 format. It can be set to either 32 or 64 bits using
--32bit-doubles or --64bit-doubles. If not specified it defaults to 32 bit doubles. The float type is al-
ways 32 bits.

10 Chapter 3. Getting started

Calypsi C compiler guide for the 68000, Release 3.5.1

3.4.5 Optimization

You can select the level of optimization using the -O flag which takes a numeric argument 1 or 2.

The compiler applies a number of techniques to reduce precision in expressions, select efficient code sequences
and dead code elimination regardless of any optimization settings.

The optimization option controls additional optimization that will further reduce the memory footprint of the
code and typically make it run faster.

3.5 Low level control

This section briefly covers how you can control access to specific memory and built-in functions, also called
intrinsics.

3.5.1 Extended keywords

Memory attribute keywords are provided for __near and, __far memory. The __near keyword is for register
A4 base relative addressing. The __far keyword is full 32 bits addressing which can be useful for larger static
data objects when using the Small data model.

You can specify an attribute such as Near in two ways, either as a __near or __attribute__((near)).

Function attributes includes __saveds and __farfunc. The __saveds attribute is useful in the Small data
model. It makes a function callable from outside your application. Such call context will not share the same
register A4 base address as your application. The compiler will generate code to preserve the old register A4
value and initialize it with the base address context used in your application.

3.5.2 Intrinsics

Intrinsics functions look like ordinary function calls, but are actually special constructs to the compiler that
makes it emit very specific instruction sequences.

To enable the use of intrinsics you need to include the header file intrinsics68000.h.

3.5.3 Assembly code

It is possible to write functions in assembly language by following the C calling convention. Such functions
can be called from C in the same way as any C function.

3.5. Low level control 11

Calypsi C compiler guide for the 68000, Release 3.5.1

12 Chapter 3. Getting started

CHAPTER 4

Data storage

This chapter discuss how you can control where data is placed and how that may affect efficiency of your
application.

The 68000 is a 32 bits architecture that can address a linear 4GB address range which is shared by code and
data.

As there is a good amount of storage registers and your statically allocated data are probably not more than
64K, you can normally use the Small data model which reserves one register as a base address for addressing
static data. This typically saves two bytes of program space for every instruction that access static data.

4.1 Ways to store data

Data can be allocated as auto, static and on the heap. The scope of variables and need to dynamically allocate
data at runtime affects how you want to allocate the data.

The general rule is that should use auto allocated variables whenever possible. This gives the compiler the
most flexibility for allocating resources closest to the core, which tends to be the most efficient way to access
the data.

4.1.1 Auto variables

Auto variables are function parameters and local variables in functions (that are not defined with the static
keyword). The compiler will try to allocate such variables in processor registers!pseudoRegisters. If this is
not possible, the stack is used.

Auto variables are only allocated where they are actually used. The register used for an auto variable can
immediately be reused for other auto variables or temporary data as soon as the variable is no long needed.
This also applies to the stack area where locations also can be reused.

Auto variables can have multiple live ranges, that is, a variable with the same name can be used multiple times
in distinct separate parts of a function. Such variables are internally treated as different and may be allocated
to different locations. Between such live ranges (or uses) they may not even exist.

13

Calypsi C compiler guide for the 68000, Release 3.5.1

When a function exits, all auto variables associated with the function are gone.

Note: If you take the address of an auto variable it means you now have a pointer to it that you can pass
to other functions. This can be very useful for allocating some temporary storage and have it filled in by a
function you call. However, you have to be careful to not use such pointer as the auto is deallocated when the
function it is defined in exits. Also be aware that when you take a pointer to an auto, it will be allocated on
the stack and it may be more costly to access it compared to another auto that has not had its address taken.

4.1.2 Static variables

A global, module or function static variable is allocated in the global memory and will take up space for the
duration of the program.

The variants differ only in visibility. A global variable is visible everywhere, but to actually use it you need
to make it visible using the extern keyword. A module static variables is visible in a compilation unit and
is declared at file scope level with the static keyword. It is also possible to have a static local variable in a
scope inside a function. Such variable is only visible inside that function when it is in scope and it will retain
its value when you call that function the next time. Use the static keyword to distinguish such variable from
an auto variable.

4.1.3 Dynamically allocated

A dynamically allocated variable is allocated from a heap using the malloc function. This is useful when you
do not know how much data you will need when the program is first started.

Note: Dynamically allocated variables are a potential problem in memory constrained systems if the program
is left running for a long time due to heap fragmentation.

4.2 Address spaces

The compiler provides multiple address spaces. An address space is an addressable area of memory with certain
properties. Such properties include:

• Width of address used to point to it

• Width of the associated integral index type

• The compiler will also use different instruction sequences to access different address spaces

• An address space normally has an extension keyword, or type attribute name associated with it

• Data stored in it uses section names tied to the address space, to provide control how to place it at the
linking stage

Address space attributes are always active in the compiler.

The Calypsi C compiler tool chain provides two address spaces, near and far.

All pointers to data memory are 32 bits wide and occupy 4 bytes of memory when stored in memory. The
keywords and address space attributes are intended to describe a storage location to help placement in ap-
propriate sections.

14 Chapter 4. Data storage

Calypsi C compiler guide for the 68000, Release 3.5.1

4.2.1 Near address space

The near address space is a memory area reachable from a base address held in register A4. This can be used
in either the Small or Large data models, but it is not available in the Far-only data model.

You can have a maximum of 64K data in the near address space. If you run out of space you may select a
couple of larger data objects and move them to the far address space (see below). 64K can be considered
quite a lot of memory for storing reasonable small static data objects. Stack and heap allocated objects are
allocated outside this 64K memory range.

4.2.2 Far address space

The far address space makes use of the full 32 bits address range. The amount of static data objects can be
up to 4GB. Direct access to the far address space costs an additional two extra bytes for each instruction.

Note: While doing a direct access to a far object costs two extra bytes, there is no difference when using a
pointer to the near or the far address area, they have the same cost.

4.2.3 Summary

The following table summarizes the available address spaces.

Table 4.1: Address spaces
Memory type Keyword Address range Pointer size Index type
Near __near -0x8000 to 0x7fff 32 bits int32_t
Far __far 0x00000000 to 0xffffffff 32 bits int32_t

Note: The Near memory type allocates data in a 64K bytes large area pointed to by a base pointer held in
register A4. Pointers and address arithmetics are performed using 32 bit operations.

4.2.4 Syntax

An address space attribute keyword such as __far is a type qualifier. Syntactically it works the same as other
C language defined type qualifier, e.g. const and volatile.

The following declaration defines four variables in the Far memory address space:

__far int a, b;
int __far c, d;

The __far type qualifier acts on the type it is closest to, which is int in this example. There is not particular
order required between type qualifier and type in C, it means the same thing.

4.2.5 Pointers

A pointers in C points to something in memory. Both the pointer itself and what it points to have types. As
an example, the type char * is a pointer to a char.

4.2. Address spaces 15

Calypsi C compiler guide for the 68000, Release 3.5.1

Pointer types are easier to understand if you read them from right to left. The * is a pointer, so char * reads
from right to left as pointer to char. This order of reading is especially useful when you mix in type qualifiers
in pointer types, as it makes it a lot easier to read and understand what the type means.

int __attribute__((far)) * p1;
long * __attribute__((far)) p2;

In this case p1 is a pointer stored in default memory that points in an int which is stored in Far memory
memory.

p2 is a pointer stored in Far memory memory that points to a long in default memory.

4.2.6 Structures

You can place a structure in a specified address space. This means that all its members are in that address
space. You cannot override individual structure members using an address space keyword. It is however
possible to have members of the structure that points to a different address space.

struct tag {
int __far * p;
int value;

};

struct tag __far myTag;

This is however not allowed:

struct tag {
int * __far p; /* incorrect */
int __far value; /* incorrect */

};

16 Chapter 4. Data storage

CHAPTER 5

Placing code and data

When compiling a program on amodern hosted machine you do not really need to care much about placement
of code and data. The tools will handle it for you and this works well as you are running on the same machine
as you are targeting.

It starts to become more complicated for a cross compiler as it needs to know which target system you are
compiling for. It gets even more complicated if you target an embedded system, as the memory system varies
wildly and you often need good control over how code and data are placed in different memories.

Good tools for embedded system gives you control over how to place the code and data. This is done by
using building blocks that gives flexibility and control over placement. The compiler is able to help you
by providing abstractions that makes it easier to express the memory system, mainly by the means of type
qualifiers, initializers and run-time model settings.

5.1 Sections

A section is a unit of code or data. The compiler will place code and data into different sections which are
saved as separate sections in the object file.

The compiler takes care of placing data objects and functions in suitable sections following certain rules.
For data objects the compiler looks at if the data object is declared const, uses a specific address space and
whether it has explicit initializers.

17

Calypsi C compiler guide for the 68000, Release 3.5.1

Table 5.1: Sections
Section name Type Memory

kind
Description

code text ROM Executable code
nearcode text ROM Executable near code
znear bss RAM bss (zero initialized) near data
near data RAM Initialized near data
zfar bss RAM bss (zero initialized) far data
far data RAM Initialized far data
cfar rodata ROM Constant far data
switch rodata ROM Switch tables
inear rodata ROM Near data initializers
ifar rodata ROM Far data initializers
data_init_table rodata ROM Data initializer table

The sections inear, ifar, ihuge and data_init_table in the table above are linker generated.

Note: It is assumed that there are no ROM or flash in either the Near area. Constants placed in either of
those are placed in a normal writable section and the const attribute only affects the type of the object.

Note: The table assigns certain sections to ROM and others to RAM. This is how it works for a ROM based
application where power is applied and the application starts. When building an application for a hosted
system where it is loaded from some storage media to RAM, this distinction may not apply. In any case, you
should regard sections marked as ROM to be read-only.

The section types are carried over from the UNIX world, refer to Section kinds in the assembler reference for
more information.

Note: When generating an application that can execute from ROM, the linker will separate an initialized
data sections into two sections. The initializers go into a new section which is prefixed by an i that should
be placed in ROM. The real data section is placed in RAM. The linker will then arrange with the help of the
C run-time startup module to copy the initializers from ROM to RAM before giving control to the main()
function.

5.1.1 Linking process

The linker reads object files with sections and a placement rules file. The placement rules file describes avail-
able memory areas and what sections that can placed in them, possibly with additional placement constraints.

The memories that contain actual value bits, which can be program code or initialized data are emitted in
the executable.

An executable can either be used as input to some ROM or FLASH programmer, be loaded by the target
machine or into a debugger which connects to, or simulates a target machine internally. There are different
executable formats and you can choose one that fits the needs of the execution environment.

Note: Even though code a data are completely separated by using different sections, it may be desirable to
place such sections together in the same memory. This can be done at the link stage by placing such sections

18 Chapter 5. Placing code and data

Calypsi C compiler guide for the 68000, Release 3.5.1

in the same memory.

5.1.2 Placing sections in memory

The linker rules file uses file extension .scm, which is actually a source file in the Scheme language. However,
you do not need to learn Scheme in order to use it, as it just a simple description of available memories and
their associated properties. Sections are then bound to the memories. You also define the size of the stack
and heap in this file.

A simple example of such linker rules file is:

(define memories
'((memory flash (address (#x100000 . #x1fffff))

(section (nearcode (#x100000 . #x10a000))
code inear ifar cfar switch data_init_table))

(memory NearRAM (address (#x200000 . #x20ffff))
(section znear near))

(memory RAM (address (#x210000 . #x23ffff))
(section sstack stack zfar far heap))

(memory Vector (address (#x0000 . #x03ff))
(section (reset #x0000)))

(block stack (size #x1000)) ; user stack
(block sstack (size #x200)) ; supervisor stack
(block heap (size #x4000)) ; heap
(base-address _NearBaseAddress NearRAM #x8000)
))

The rules file is evaluated by a Scheme interpreter. In this simple form it is just a definition of a global data
object named memories. This contains a list of memory objects that have a name, an address range and a list
of sections that goes into a given memory. There are ways to specify that certain sections are to be placed at
a fixed address. Finally there are blocks that defines sections related to the stack and heap. These just create
a section and specify the size. Such block sections also need to be tied to a memory in the sections list.

Note: As the linker rules file is actually a Scheme program that is evaluated, it can in theory construct the
memories object by running functions or expanding macros. The expected outcome after evaluating the linker
rules source file is that the Scheme interpreter leaves an object named memories in its global environment
when it terminates. However, you will probably do not need anything more than a rather simple file as in the
example shown.

5.2 Data initialization

A startup routine is performed before the main() function is called. This startup routine takes care of preparing
the execution environment for the C program by initializing the stack pointer, initialize global variables and
prepare system resources such as file streams and the heap, if used by the application.

5.2.1 Static data

Static data that needs to be initialized comes in two forms, zero initialized and those that have non-zero
initializers. Zero initialization is done by filling such memory ranges with zero. Explicit initialization is done
by copying an initializer section in ROM to its corresponding RAM area.

5.2. Data initialization 19

Calypsi C compiler guide for the 68000, Release 3.5.1

This process is table driven using a section named data_init_table which should be placed in the same
memory as the !cdata section, which holds constants.

Note: If you are running a hosted environment you can specify the command line option --hosted to the
linker. In such case it is assumed that the program image is loaded into RAM from some external media. In
this case initialization of variables can be done in-place by the load action. Thus, having separate initializers
to be copied is not needed.

The --target option also has the effect of enabling running in a hosted environment.

5.3 Stack

The stack is where function return addresses, saved registers and variables are kept.

The stack helps keeping track of the current execution state and makes it possible to implement reentrant
and recursive functions.

5.3.1 Stack size considerations

The stack size is defined in the linker rules file. The stack size should be set low as possible, but not any lower.
If given too much space you are essentially wasting RAM space not being used for anything. However, if set
too small it will cause corruption of other data.

Exact stack use can be hard to predict and it is better to err on the side of some safety. Also during development
of your application you may want to use a bit oversized stack if possible, to allow you to focus on other issues.
In the end, you are most likely constrained by some fixed amount of RAM and need to balance how much you
can use for the stack with the optional heap and statically allocated data.

20 Chapter 5. Placing code and data

CHAPTER 6

C language

This chapter discusses the C language as it is implemented. The language supported is the ISO/IEC 9899:1999
standard, which is often called the C99 standard.

6.1 Overview

If you are used to older versions of the C, the C99 introduces several new useful features:

• Declarations and statements can be mixed in the same block scope

• A declaration can be placed in the initialization expression of a for loop

• The bool datatype, available as _Bool or as bool after the stdbool.h header file has been included

• The long long data type

• C++ style comments

• Use of incomplete array at end of a structure

• Variable length arrays

6.2 Extensions

Language extensions are always enabled and include various qualifier keywords, intrinsic functions and some
additional features available in the library.

21

Calypsi C compiler guide for the 68000, Release 3.5.1

22 Chapter 6. C language

CHAPTER 7

Efficient coding

The Calypsi C compiler tool chain is designed to be used when coding for memory constrained systems,
typically embedded systems. This discusses how you should think about using proper data types, how to
think on both smaller as well as larger targets.

Even though your coding today is for a certain system, the code may live on and be moved to either larger or
smaller systems. This chapter discusses tradeoffs between such environments.

7.1 Data types

Selecting data types have great impact on the overall program size and execution speed. The following are
rules of thumb:

• In general you should use as small types as possible

• Floating point operations are in general inefficient, they occupy space and are often slow

• Use variables with as narrow scope as possible

• Avoid taking the address of a variable. If you do, limit its use as much as possible. The reason is that
the compiler cannot allocate such variable in a register (there is no address of a register). It also means
the optimizer cannot know how the variable is affected by function calls

7.1.1 Integer types

Even though using the smallest possible type is recommended, it has the drawback that if the code is compiled
for a larger target, it may actually be more efficient to use int and unsigned int, as it is often the sweet-spot
in terms of efficiency.

The stdint.h header file contains a number of integer types that are very helpful in select appropriate integer
type based on size, efficiency and portability.

23

Calypsi C compiler guide for the 68000, Release 3.5.1

A type such as uint_fast16_t defines an unsigned type of at least width 16 bits that is meant for fast execution.
An 8 bit target will set this to a 16 bit type, while a 32 bit target may choose to use a 32 bit type for it, especially
if the instruction set is better at handling 32 bit operations compared to 16 bit operations.

7.1.2 Floating point types

Floating point is often implemented using library routines in assembly language which occupy code space
and have execution overhead.

One alternative is to use normal integers in fixed point instead. These are often described in Q notation. For
example, a Q24.8 number has 24 bits of integer part and 8 fractional bits. Such numbers can be manipulated
using normal integer operations and still represent fractional parts. You will need to compensate and scale
values when operating on them, which is reasonable straightforward.

7.1.3 Implicit conversions

C has conversion rules which strives to convert integers to int and float to double. This can introduce
additional code and if this is a concern, you either need to understand the rules for such conversions, or study
the generated code from the compiler.

Note: While studying generated assembly code may sound daunting, you do not actually need to understand
what is going on in detail. Having some familiarity and a rough feeling for how it works will take you a long
way. The compiler can be requested to generate a list file (-l or --list-file command line option). The
resulting list file will show the C code intermixed with the generated assembly code.

7.2 Use prototypes

Functions can be declared in two ways. Traditional C uses a style without prototypes that is not recommended
as it makes it harder for the compiler to detect errors in the code. Using prototypes is safer and allows for
better code generation as it avoids certain type promotion rules that can introduce extra code. The traditional
style is only supported for compatibility reasons with old code. In traditional style a declaration does not
specify the parameters:

/* Traditional style */
int foo(); /* declaration */

int foo(c, i) /* definition */
char c;
int i;

{
return i - c;

}

In this case the function takes a char parameter, but that is promoted to int during function call and causes
additional code.

Using prototypes with Standard C you specify parameters in the declaration:

/* Standard C prototype style */
int foo(char c, int i); /* declaration */

(continues on next page)

24 Chapter 7. Efficient coding

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

int foo(char c, int i) /* definition */
{

return i - c;
}

In this case the char parameter is not promoted to int and is passed as a char type.

7.3 Use tables

Consider the tradeoff between calculating something compared to using a table to encode some knowledge
or operation.

If implementing a sine operation in Q (fixed point) notation, that can be approximated using a table lookup
rather than calculated, which can make the operation very fast and compact.

7.3. Use tables 25

Calypsi C compiler guide for the 68000, Release 3.5.1

26 Chapter 7. Efficient coding

CHAPTER 8

Running the compiler

The interface to run the compiler is command line based. It is also possible to use the compiler from an IDE.
In this case the IDE interfaces to the compiler using the command line.

8.1 Basic invocation

The compiler is invoked in the following way:

$ cc68k() [options] sourcefile [options]

As an example, to compile a source file with debugging information and a list file, you can use:

$ cc68k --debug source.c -l

Command line options are optional arguments that tune the behavior of the compiler. They always start with
a dash character. There are two variants, single letter options (-l to instruct the compiler to create a list file)
starts with a single dash. The other variant is long descriptive options that starts with two dashes.

Some options require an argument. The argument appears after option, they can be separated either by a
space or an equal (=) sign. For single argument options, the argument is allowed to appear without any
separator:

$ cc68k -Iinclude source.c -D VERBOSE=2 --list-file=tiny-source.lst

In this case the -I option adds include as a directory to scan for header files. The symbol VERBOSE is defined
in the preprocessor with value 2. A list file with a specific name is also produced.

The order in which the options appear normally do matter, except for the -I option that adds directories to
search for header files. Such directories are searched in the order in which they appear on the command line.

To display the version of the compiler, use -v or --version:

$ cc68k --version
Calypsi ISO C compiler for Motorola 68000 version 3.5.1

27

Calypsi C compiler guide for the 68000, Release 3.5.1

Command line options are described in Command line options.

8.2 Include search path

Header file inclusion exists in two forms. You can either surround the filename with double quotes or angled
brackets:

#include "myheader.h"
#include <stdio.h>

The angled form is normally used for system header files while the quoted form is used for application specific
header files.

The search order for include files is as follows:

1. Relative to compilation directory (double quote include only)

2. In directories specified in the -I option in the order they appear on the command line

3. The system directory, which is the installation directory

A header file specified in angle brackets are not searched relative to the compilation directory, otherwise they
behave identical.

The system header file directory is the installation directory.

Note: More precisely the system header file directory is a directory relative to actual cc68k executable file.
This means that if you move an installation to another location in a the file system, it will still be able to find
the correct system header file directory.

8.3 Compiler output

The compiler outputs one or two files, an object file that can be linked with other object files and libraries by
ln68k to produce an executable file, and optionally a list file.

8.3.1 Object file

The object file is in the ELF format with optional DWARF debugging information (if --debug (also named -g)
option is specified).

The object file contains the following components:

• A symbol table

• Relocatable sections with code and data

• Relocations, to allow address values to be altered by the linker when the actual value is know after
placing the section

• Source level debugging information in DWARF format (if the --debug command line option was speci-
fied)

• Vendor specific data, which carries certain additional information specific to the Calypsi C compiler tool
chain. This includes runtime attributes as well as additional information not carried by ELF/DWARF,
but that is used by the linker and debugger.

28 Chapter 8. Running the compiler

Calypsi C compiler guide for the 68000, Release 3.5.1

8.3.2 List file

The list file is a text file meant to be shown with a fixed width font. It contains a header that shows compiler,
version, time when it was created and the command line used. The C source file follows intermixed with
generated assembly code. Finally there is a summary of the code and data sizes.

The following simple array summation function:

int sum(int a, int b, int c) {
if (a < b) {

return a + c;
} else {

return b + c;
}

}

If compiled with the -l option it will produce a list file that looks as follows:

###
#
Calypsi ISO C compiler for Motorola 68000 version 3.5.1
04/Jan/2022 21:35:59
Command line: sum.c -l
#
###

\ 00000000 .rtmodel version,"1"
\ 00000000 .rtmodel nearDataBase,"A4"
\ 00000000 .rtmodel core,"68000"
\ 00000000 .rtmodel codeModel,"large"

0001 int sum(int a, int b, int c) {
\ 00000000 .section code,text
\ 00000000 .public sum
\ 00000000 .align 2
\ 00000000 2f02 sum: move.l d2,-(sp)
\ 00000002 242f0008 move.l (8,sp),d2

0002 if (a < b) {
\ 00000006 b280 cmp.l d0,d1
\ 00000008 6f06 ble.s `?L4`

0003 return a + c;
\ 0000000a d480 add.l d0,d2
\ 0000000c 2002 move.l d2,d0
\ 0000000e 6004 bra.s `?L3`
\ 00000010 `?L4`:

0004 } else {
0005 return b + c;

\ 00000010 d481 add.l d1,d2
\ 00000012 2002 move.l d2,d0
\ 00000014 `?L3`:

0006 }
0007 }

\ 00000014 241f move.l (sp)+,d2
\ 00000016 4e75 rts

##########################
#
Memory sizes (decimal)
#

(continues on next page)

8.3. Compiler output 29

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

##########################

Executable (Text): 24 bytes

8.4 Diagnostics

Compiler diagnostic messages are given for a number of different reasons. They identify problems that either
must, or should be addressed in some way.

8.4.1 Errors

An error identifies a problem in the code that prevents the compiler from producing a valid output file.

8.4.2 Warnings

A warning identifies a potential problem in the code that you probably want to take a look at and possibly
rectify. The compiler is still able to produce a valid output file.

8.4.3 Internal errors

An internal error may result if the compiler detects a problem internally that should not occur. This always
indicates that there is an error in the compiler product.

8.4.4 Controlling warnings

Diagnostic can be controlled using the -W option that takes a wide range of possible alternatives. It is beyond
the scope of this guide to list them all. A complete reference can be found at https://clang.llvm.org/docs/
DiagnosticsReference.html as the parser and diagnostics engine is the same as in the Clang project.

Consider the following code:

int test(int x)
{

if (x = 6) {
return 10;

} else {
return 0;

}
}

In the code the compare uses an assignment, this is a common error in C. Maybe you intended to use equal
operator (==), however it is perfectly legal to test the result of an assignment expression is non-zero. The
compiler cannot know your intention, but there is a potential problem here. Compiling this code will result
in some warnings:

w.c:3:10: warning: using the result of an assignment as a condition without parentheses [-Wparentheses]
if (x = 6) {

~~^~~

(continues on next page)

30 Chapter 8. Running the compiler

https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

w.c:3:10: note: place parentheses around the assignment to silence this warning
if (x = 6) {

^
()

w.c:3:10: note: use '==' to turn this assignment into an equality comparison
if (x = 6) {

^
==

The warnings identifies that there may be a problem in the code. The name of the warning that triggered is
also given (-Wparentheses). Finally, it makes suggestions on how you can change the code.

If you think the warning is of no use to you and you do not want to see this particular warning again, you can
add the option -Wno-parentheses to the command line to silence it.

You can add an extra pair of parentheses around the assignment, which is generally considered a good way
of stating that this is an intentional assignment inside a test expression:

int test(int x)
{

if ((x = 6)) {
return 10;

} else {
return 0;

}
}

Finally, if the intention with the code was to use the equal operator, you should change it to use the correct
operator:

int test(int x)
{

if (x == 6) {
return 10;

} else {
return 0;

}
}

8.5 Command line options

This section covers the cc68k command line options in detail.

8.5.1 Options overview

If you run the compiler from the command line without any arguments it will complain that the input source
file is missing and then shows a short form help:

$ cc68k
Missing: FILE

Usage: cc68k [-v|--version] [-o|--output-file OUTPUT-FILE] [-l]
[--list-file LIST-FILE] [-I DIRECTORY] [-D IDENTIFIER]

(continues on next page)

8.5. Command line options 31

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

[-U IDENTIFIER] [-g|--debug] ([--32bit-doubles] |
[--64bit-doubles]) ([--char-is-signed] | [--char-is-unsigned]) [-E]
[--print-macro-definitions] [-O LEVEL] ([--space] | [--speed])
[--no-cross-call] ([--no-inline] | [--always-inline])
[--only-marked-as-inline] [--strong-inline] [--rtattr NAME=VALUE]
[--weak-symbols] [--no-vector-sections] [-c]
[--force-switch STRATEGY] [-W ARG] [--pedantic-errors]
[--core CORE] [--target TARGET] [--fd DIRECTORY]
[--code-model NAME] [--data-model NAME] FILE

use 'cc68k --help' for detailed help

You can request a longer help using the --help option:

$ cc68k --help
Calypsi ISO C compiler for Motorola 68000 version 3.5.1

Usage: cc68k [-v|--version] [-o|--output-file OUTPUT-FILE] [-l]
[--list-file LIST-FILE] [-I DIRECTORY] [-D IDENTIFIER]
[-U IDENTIFIER] [-g|--debug] ([--32bit-doubles] |
[--64bit-doubles]) ([--char-is-signed] | [--char-is-unsigned]) [-E]
[--print-macro-definitions] [-O LEVEL] ([--space] | [--speed])
[--no-cross-call] ([--no-inline] | [--always-inline])
[--only-marked-as-inline] [--strong-inline] [--rtattr NAME=VALUE]
[--weak-symbols] [--no-vector-sections] [-c]
[--force-switch STRATEGY] [-W ARG] [--pedantic-errors]
[--core CORE] [--target TARGET] [--fd DIRECTORY]
[--code-model NAME] [--data-model NAME] FILE

use 'cc68k --help' for detailed help

Available options:
-v,--version Display version number
-o,--output-file OUTPUT-FILE

Name of output file
-l Generate a list file, named by appending '.lst' to

input file
--list-file LIST-FILE Generate list file
-I DIRECTORY Include directory
-D IDENTIFIER Predefine a macro
-U IDENTIFIER #undef a predefined macro
-g,--debug Produce debugging information
--32bit-doubles Make the 'double' data type 32-bits (this is the

default)
--64bit-doubles Make the 'double' data type 64-bits
--char-is-signed Treat 'char' as a signed type
--char-is-unsigned Treat 'char' as an unsigned type (this is the

default)
-E Stop after preprocessing
--print-macro-definitions

Print macro definitions in -E mode in addition to
normal output

-O LEVEL Enable optimizer, -O0, -O1 or -O2
--space Optimize for space (this is the default, use together

with -O)
--speed Optimize for speed (use together with -O)
--no-cross-call Disable cross call optimization
--no-inline Disable all function inlining

(continues on next page)

32 Chapter 8. Running the compiler

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

--always-inline Always inline functions
--only-marked-as-inline Only consider inlining functions marked as 'inline'
--strong-inline Always (try to) inline functions marked as 'inline'
--rtattr NAME=VALUE Define a run-time attribute (identifier or quoted

string value accepted)
--weak-symbols Make all public symbols entries weak
--no-vector-sections Discard auto generated interrupt vector sections
-c Generate object file and do not try to link
--force-switch STRATEGY Switch strategy, one of 'if-else', 'jump-table' or

'value-table'
-W ARG Warning control
--pedantic-errors Error on language extensions
--core CORE CORE, one of '68000' or '68010' (defaults to '68000')
--target TARGET Target system, one of 'Amiga' or 'Foenix' (defaults

to embedded/ROM use, if omitted)
--fd DIRECTORY Add directory to search path for Amiga library .fd

files
--code-model NAME code model, one of 'small' or 'large' (defaults to

'large')
--data-model NAME data model, one of 'small', 'large' or 'far-only'

(defaults to 'small')
-h,--help Show this help text

8.5.2 Options in detail

--version, -v

Displays the name and version of the compiler.

--output-file, -o

Use this option to specify the name of the output object file. If not given, the output file is created from the
name of the input file (ignoring any directory path) and sets the file extension to .o. Thus, output files are
written to the compilation directory by default.

You can use this option to alter the name of the output file as well as providing a directory path to it. Such
directory must already exist.

-l

Generate a list file. The name used is the name of the input file (ignoring any directory path) with a .lst file
extension. See also --list-file.

The -l and --list-file options are mutually exclusive, only one of them can be stated on the command line.

--list-file

Generate a list file. The name of the list file is given as argument to this option. See also -l to generate a list
file based on the source filename.

The -l and --list-file options are mutually exclusive, only one of them can be stated on the command line.

8.5. Command line options 33

Calypsi C compiler guide for the 68000, Release 3.5.1

-I

Add a directory to the current include search path. This option can be used multiple times on a command
line. The order in which they appear specifies the search order between the directories.

The system include directory is always added last to the search order list.

-D

Define a preprocessor symbol. This takes an argument with the symbol name and optionally an assignment
value -Dsymbol[=value]. If no value is given, the preprocessor symbol is given the value 1.

-U

Undefine a preprocessor symbol. This takes an argument with the symbol name to be undefined.

--debug

Generate DWARF symbolic debugging information. In order to get debugging information all the way to the
debugger, the linker must also be given this option.

-g

Synonym for --debug.

--32bit-doubles

The double floating point data type has 32 bits precision.

--64bit-doubles

The double floating point data type has 64 bits precision.

--char-is-signed

This makes the data type char signed. The default is that char is unsigned.

--char-is-unsigned

This makes the data type char unsigned. This is also the default.

-E

Stop after running the preprocessor. The output from the preprocessor is written to standard output (stdout).

--print-macro-definitions

This is used together with the -E option to also write out all macro definitions.

34 Chapter 8. Running the compiler

Calypsi C compiler guide for the 68000, Release 3.5.1

-O

Run the optimizer. This expects and argument that is either 0, 1 or 2. -O0 (the default) means no additional
optimization passes. This still performs a decent amount of work to produce good code. -O1 enables additional
optimizer passes to further improve the code. Finally -O2 enables all optimizer passes.

--space

Optimize for space, this is the default. Use -O to enable optimizations.

--speed

Optimize for speed. Use -O to enable optimizations. This option control decisions about tradeoffs and will
balance towardsmaking the code run faster at the expense of additional code space. See also --no-cross-call
below.

--no-cross-call

Disable the cross call optimizer which is normally enabled at -O2. The cross call optimizer lifts out common
code sequences to small subroutines. This can have a very beneficial impact on code space, so it is enabled
by default when using --speed.

--no-inline

Disable all function inlining which is normally enabled at -O1.

--always-inline

Enable function inlining regardless of optimization level setting.

--only-marked-as-inline

Only consider functions marked with the inline keyword for inlining. This will disregard small functions and
single use static functuions from being considered for inlining.

--strong-inline

Regard functions marked with the inline keyword as a strong hint that that they should be inlined. The
compiler may still decide not to do it.

--rtattr NAME=VALUE

This defines a runtime attribute which is written to the object file. This is used to specify runtime attribute
value that can be used in the linker for checking object file consistency or to select a particular variant of a
function that exists in many variants.

The printf() formatter is an example of this. Three variants with identical names are included in the C
library, they are separated by having different runtime attribute values which makes it possible to select
which formatter variant to use during the link stage.

8.5. Command line options 35

Calypsi C compiler guide for the 68000, Release 3.5.1

--weak-symbols

Make all public symbols in the object file weak. This is normally not needed, but can be used in certain
situation to make a default implementation of some function in a library. This makes it possible to override
the function with one that is not weak, or fall back to use the default one when no replacement is provided.

--no-vector-sections

Do not generate vector table entries for interrupt functions. This is useful when writing interrupt functions
that are going to be installed using some other mechanism.

-c

Generate an object file and do not try to link. This is actually a no-operation as the compiler always does that.
This option is provided as this is such a commonly used option with many compilers.

--force-switch

This tells the compiler to use a specific strategy for generating switch tables. The compiler normally uses
heuristics to determine how to generate a switch table. In some cases you may want to override the heuristics
and force a particular variant.

The variants provided are series of if-else tests, a jump table or a table with value and label pairs. For very
small switches the if-else approach is often best. The jump table is typically the fastest when having a decent
amount of entries that are close (or next) to each other. Finally, the value and label pairs work well for tables
of some size where the values are spread out. This uses a larger table and a function that performs a binary
search lookup which means it scales fairly well.

In big O notation, the if-else variant is O(n), a jump table O(1) and the value and label pairs O(log(n)).

-W

Control warnings, see Controlling warnings.

--pedantic-errors

Generate errors on using language extensions. The language supported has certain relaxations to the strict C
standard intended to make the language a little bit more flexible. Use this option to disable such extensions.

--core

This selects the 68000 core to use. This can either be 68000 or 68010. This affects the available instructions.
If not specified it defaults to 68000.

--target

This tells the compiler that the code is intended for a certain target platform. The only known specific platform
is Foenix. This tells the compiler to generate code for the Foenix hardware math unit and enables hosted
behavior.

36 Chapter 8. Running the compiler

Calypsi C compiler guide for the 68000, Release 3.5.1

--code-model

This options tells the compiler which code model to use. See Code model for more information.

--data-model

This options tells the compiler which data model to use. See Data model for more information.

8.5. Command line options 37

Calypsi C compiler guide for the 68000, Release 3.5.1

38 Chapter 8. Running the compiler

CHAPTER 9

Data representation

This chapter describes the available data types in detail.

9.1 Basic types

All standard integer types are supported. The following table lists the built-in integer types and their ranges.

Table 9.1: Integer types
Type name Size Range
bool 8 bits 0 to 1
char 8 bits 0 to 255
signed char 8 bits -128 to 127
unsigned char 8 bits 0 to 255
short 16 bits -32768 to 32767
signed short 16 bits -32768 to 32767
unsigned short 16 bits 0 to 65535
int 32 bits −231 to 231 − 1
signed int 32 bits −231 to 231 − 1
unsigned int 32 bits 0 to 232 − 1
long 32 bits −231 to 231 − 1
signed long 32 bits −231 to 231 − 1
unsigned long 32 bits 0 to 232 − 1
signed long long 64 bits −263 to 263 − 1
long long 64 bits −263 to 263 − 1
unsigned long long 64 bits 0 to 264 − 1

9.1.1 bool

To use the bool data you need to include stdbool.h which also defines true and false.

39

Calypsi C compiler guide for the 68000, Release 3.5.1

The boolean data type is also available as _Bool without having to include stdbool.h.

9.1.2 char

The character type is unsigned by default. You can enable signed char by compiling the code with the
--char-is-signed command line option. Note that the supplied C library has been compiled with char as
unsigned.

Note: The char type differs from short, int and long in that it defaults to being unsigned here. Standard
C allows it to be either signed or unsigned. The rationale for making char unsigned is that it is meant to
represent a character code and in encoding standards like ASCII, ISO-8859-1 and Unicode, character values
are unsigned entities.

If you intend to use 8 bits data types in expressions, you should consider using int8_t or uint8_t instead.
They are defined int stdint.h.

9.1.3 wchar_t

The wide character type wchar_t is defined if you include stddef.h.

9.1.4 Bit fields

Bit fields are supported based on any integer type. A bit field value has the same type (and signedness) as
the integer base type it is defined in and are subject to the usual conversion rules when used in expressions.

A bit field is allocated starting from the least significant available bitposition in its container. If there are not
enough bits available in the container to represent the bit field, a new container is allocated.

Consider the following declaration:

struct bf {
uint16_t a:7;
int16_t b:5;
uint32_t c:24;
uint8_t d:4;
uint8_t e:2;
int8_t f:3;

};

The two bit fields a and b are allocated in the same 16 bits container. Bit field c gets a 32 bits container of its
own. Finally, d and e will share the same 8 bits container while f is allocated in a separate 8 bits container as
there is not room to store it together with d and e.

Bit fields should be used with care. They can be a convenient way to pack several small values into some
structure when data space is limited. However, accessing bit fields is in general more costly in terms of
produced code, compared to using normal integer types.

Note: Sometimes it can be tempting to try and map bit fields to hardware registers. This can work, but it
makes the code more sensitive to using a particular compiler. It may also require some thinking to get it right.
The alternative way of accessing hardware registers in its intended access width and manually apply shift and
mask operations is often more robust.

40 Chapter 9. Data representation

Calypsi C compiler guide for the 68000, Release 3.5.1

9.1.5 Floating-point types

Floating point values follows the IEEE 754 format and is supported in two different sizes.

Table 9.2: Floating-point types
Type name Size Approximate range (normal values)
float 32 bits ±1.18 × 10−38 to ±3.40 × 1038
double 32/64 as float or long double

long double 64 bits ±2.23 × 10−308 to ±1.80 × 10308

Floating point numbers are represented in binary floating point form. The size of double is 32 bits by default.
This can be changed to 64 bits by using the command line option --64bit-doubles. The run-time library
comes both in variants compiled with double set to 32 bits as well as 64 bits.

Subnormal numbers, infinity and NaN (not a number) are supported. The ranges stated in the table are for
normal floating point numbers. Subnormal floating-point numbers extends the range of the exponent further
at the cost of gradual loss of precision in the mantissa.

Floating point exceptions and changing the rounding mode are not supported.

Note: When the Foenix tareget is enabled (using --target=Foenix command line option), the built-in hard-
ware math module is used for 32-bit floating point operations. This math module does not support subnormal
numbers and all operations that would produce a subnormal number instead generates zero.

32 bits format

In the 32 bits format the exponent is 8 bits and the mantissa is 23 bits. The precision is between 6 and 7
decimal digits.

64 bits format

In the 64 bits format the exponent is 11 bits and the mantissa is 52 bits. The precision is between 15 and 16
decimal digits.

9.1.6 Function pointer types

For the 68000 architecture function pointers are always 32 bits.

9.1.7 Data pointer types

The following data pointers are available:

For the 68000 architecture data pointers are always 32 bits.

Each data pointer has an associated index type which is always a signed integer type. This type is used in
address calculations, e.g. array access with an index, or when advancing a pointer by adding (or subtracting)
an integer value.

9.1. Basic types 41

Calypsi C compiler guide for the 68000, Release 3.5.1

9.1.8 Pointer conversions

Function and data pointers are treated as being unsigned values. In general, casting to a type that has fewer
bits means a pointer value gets truncated. Casting to a wider type results in zero extension.

9.1.9 size_t

This is an unsigned integer type that holds the largest size of an object.

On the 68000 the size of size_t is 32 bits.

9.1.10 ssize_t

This type has the same bit width as size_t, but has a signed type. This type is used by library routines.

9.1.11 ptrdiff_t

This is a signed integer type that represents a distance inside the largest possible object.

On the 68000 the size of ptrdiff_t is 32 bits.

The value that results from sutracting two data pointers (pointing inside the same object) has type ptrdiff_t.
The value itself represents the number of elements between the pointers (not the number of bytes).

Note: Standard C allows referring to an element one beyond the actual object. Subtracting the end address
from the start address can result in a negative result because the value is larger than what can be represented
by ptrdiff_t.

9.2 Structure types

Structure types are fully supported and can be nested. Structure members are stored sequentially in the order
they appear in the declaration.

9.3 Union types

Union types are fully supported. The compiler also supports a useful extension that allows anonymous unions
inside a structure, consider the following code:

struct Scope {
union {

char alpha;
int num;

} u;
int b;

};

int main() {
struct Scope x;

(continues on next page)

42 Chapter 9. Data representation

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

x.u.num = 65;
x.u.alpha = 'A';
return 0;

}

The use of a declarator on the union inside the structure means that it takes an extra step to access its
members. This has been relaxed in the C11 standard so that you can instead write:

struct Scope {
// Anonymous union
union {

char alpha;
int num;

};
int b;

};

int main() {
struct Scope x;
x.num = 65;
x.alpha = 'A';
return 0;

}

This C11 extension is enabled by default and allows such anonymous unions to be compiled without any
diagnostic messages, even though the compiler actually supports C99.

You can enable warnings if you use such extensions by adding the command line option -Wc11-extensions
or -Wpedantic to the command line.

You can also disable such extensions with the command line option --pedantic-errors. In that case you will
get an error instead.

9.4 Enumeration types

Enumeration types are represented as int. If you want to use a smaller storage representation you need to
pick a smaller integral type. If you want a better name for it, you can use a typedef:

enum fruit { apple, orange, banana };

typedef char fruit_t;

fruit_t active;

void citrus(void)
{

active = orange;
}

9.5 Type qualifiers

Standard C provides two type qualifers, volatile and const.

9.4. Enumeration types 43

Calypsi C compiler guide for the 68000, Release 3.5.1

9.5.1 Volatile objects

C has a concept of volatile objects. They are typically used for accessing hardware. Both writing and reading
volatile objects are seen as side-effects that will happen.

Somewhat related there is a concept of sequence points in a program. A volatile accesses that is performed
between two sequence points will take place between those sequence points. It is not allowed to move any
volatile access past a sequence point.

To ensure that two memory accesses occur in a certain order, you need to make them volatile and separate
them with a sequence point. The semi-colon after a statement is an example of a sequence point:

uint8_t volatile * mem1;
uint8_t volatile * mem2;

void foo () {
*mem1 = 2;
*mem2;

}

In this case the write to mem1 is guaranteed to be performed before the read of mem2. The read of mem2 will
also occur even if the result of the read is not used.

If multiple volatile accesses are done between two sequence points the order they happen in is undefined:

uint8_t volatile * mem1;
uint8_t volatile * mem2;

int foo () {

return *mem1 + *mem2;
}

In this case both mem1 and mem2 are read, but the order in which they are read is undefined.

Access size

Accessing a volatile object that is wider than the natural register size of the target will result in that the access
is performed in several steps as dictated by the register size of the target machine.

Reading and only using a portion of a scalar volatile object will result in that the whole object is read:

volatile uint64_t wide;

uint16_t foo () {
return wide;

}

Here the volatile object is 64 bits, but we are only interested in the lower 16 bits. In this case all 64 bits are
read, the upper 48 bits are then discarded and the function returns the lower 16 bits.

If wide was not volatile, the compiler may instead just read the lower 16 bits of wide.

Assignment results

C has the notation that an assignment has an expression value, consider:

44 Chapter 9. Data representation

Calypsi C compiler guide for the 68000, Release 3.5.1

volatile int var;

int foo () {
return var = 4;

}

The assignment will write 4 to the volatile, but what will the function actually return? It could either (always)
return 4 or it could whatever var reads to after the assignment. The answer is that it is implementation defined
and could be either.

You should in general avoid such constructs in your programs and be more explicit with what you want to
happen. To force a read after the assignment:

volatile int var;

int foo () {
var = 4;
return var;

}

If you want to be sure the function returns 4:

volatile int var;

int foo () {
var = 4;
return 4;

}

This makes the intention of the code clear and has the benefit that it will the same behavior no matter which
C compiler you use.

Bit fields

There are no guarantees what will happen when accessing volatile bit fields. A bit field typically describes
a subset of bit locations inside its storage unit. In many cases adjacent bits may get accessed, depending on
layout and memory storage units. Using bit fields together with volatile is discouraged.

Note: Rather than using bit fields, define normal scalar values so that they cover hardware registers, following
the defined or intended size of hardware register access. Then use expressions to extract or manipulate the
part of the register you want.

9.5.2 Const objects

The const type qualifer indicates that an object is read-only. It can be applied to data objects as well as
pointers.

When defining a static object as const, the compiler will try to place it in a section that is read-only.

A pointer to a const object can point to both a read-only as well as writable objects. Using such pointer
indicates that any user of the pointer should not attempt to alter memory. This can help the optimizer. It is
also considered good practise as it prevents altering data when the some part of the applicaton is not intended
to do writes to the data object.

9.5. Type qualifiers 45

Calypsi C compiler guide for the 68000, Release 3.5.1

9.6 Type definitions

Using type definitions (the typedef keyword) in your code is a highly recommended practise that has several
benefits:

1. It makes your code more readable when types have meaningful names. A speed_t``gives a lot more
understanding than ``long. Also if you need to change the definition of it, there is only one place
where it needs to be done. This saves you from going through the code to find all the long and change
them to something else. Not to mention that you should only change those long in your code that
actually are speed and not any other uses of long.

2. A struct fish can be named fish_t, which is shorter and just as readable. It also hides that it is a
structure, which may be desirable in many cases

There is no cost related to using typedef, the generated code will be the same.

9.7 Alignment

The 68000 imposes even alignment for data objects larger than one byte. Padding between structure members
are used if needed.

46 Chapter 9. Data representation

CHAPTER 10

Extended attributes

An attribute is some additional that can be attached to a function, data object or type. You can attach an
attribute by specifying it as a keyword. Standard C has some built-in keywords, e.g. as const.

Extended attributes are used to gain gain access to certain behaviors or properties that are not part of Standard
C. They are either tied to the specific target system or are features that are useful for embedded systems.

10.1 Overview

Attribute can be applied either with keyword syntax or using attribute syntax. A keyword is just a single
word, e.g. __far while the attribute form looks as __attribute__((far)). They are functionally the same,
but there are certain situations where the C parser will not accept the keyword form and you may need to
use the attribute form.

Otherwise it is mostly a matter of taste which you use. You may also want to use preprocessor defined macros
to rename attributes to make the code more portable. Such preprocessor macro definitions can also be used
to turn some attributes off when compiling for another target, or rename it to match another compiler or
different target.

10.2 Using attributes

Type attributes can be applied to type declarations and follows the same syntax as type qualifiers like const
and volatile.

10.2.1 Syntax for data objects

You can apply an attribute to data objects in the following way:

__attribute__((far)) int a, b;
int __far c, d;

47

Calypsi C compiler guide for the 68000, Release 3.5.1

The location of the attribute does not matter when applied to an object. The example above will apply the
Far memory attribute to all objects defined (a, b, c and d).

10.2.2 Syntax for pointer types

Attributes can also be applied to pointer types. In this case the location of the attribute is significant as it
affects what it applies to. It can either say that a pointer is constant, or that what it points to is constant.

The easiest way to decipher attributes used in function types is to read the type from right to left.

int __attribute__((far)) * p1;
long * __attribute__((far)) p2;

In this case p1 is a pointer stored in default memory that points in an int which is stored in Far memory
memory.

p2 is a pointer stored in Far memory memory that points to a long in default memory.

10.3 Attribute reference

This section goes through all available extension keywords and attributes.

10.3.1 Summary of attributes

The following table summarizes available attributes. To use an attribute in keyword form you need to add
two underscores to it, e.g. __far rather than just far. When used in attribute syntax the attribute name is
used together with __attribute__, e.g. __attribute__((zpage)).

Table 10.1: Extended attributes summary
Attribute name Description
aligned(nn) Specify alignment of data object or function
section("name") Specify section name to use for a data object or function
near Control storage of data object to near area
far Control storage of data object to far area
interrupt Used to define an interrupt function
amiga_interrupt Amiga style interrupt function
saveds Entry point that needs to initialize base pointer in register A4
intrinsic Used to declare an intrinsic function
task Relaxes preserving registers

10.3.2 Description of attributes

This section describes each attribute in detail.

near

This specifies a data object or a pointer to a data object that resides in a Near area. Accessing a global or
static object in this area saves two bytes for each machine instruction used compared to the Far area.

Register A4 is reserved to hold a base pointer to this area.

48 Chapter 10. Extended attributes

Calypsi C compiler guide for the 68000, Release 3.5.1

far

This specifies a data object or a pointer to a data object that can reside anywhere in memory.

The code needed to access Far memory tend to be slightly larger compared to the Near memory.

interrupt

An interrupt function is meant to serve as an interrupt handler. The interrupt attribute has the following
effects:

1. An interrupt function cannot take any parameters

2. An interrupt function will preserve all registers used

3. Leaving the interrupt function uses a different instruction sequence compared to normal functions

4. The interrupt attribute may optionally be given a vector address as an argument

The interrupt vector is specified is given as an argument to the interrupt attribute:

int counter;

__attribute__((interrupt(0x0064)))
void irq () {

counter++;
}

Note: The vector argument is optional. Omitting it means that there will be no vector section entry generated
for that interrupt function. You can also suppress all vector sections from being generated by using the
--no-vector-sections command line option.

amiga_interrupt

The amiga_interrupt attribute defines an interrupt function intended to be used with the Amiga operating
system. The Amiga interrupt has the following effects:

1. An interrupt function cannot take any parameters

2. Follows the register convention of an Amiga interrupt, registers D0`, ``D1, A0, A1, A5 and A6 are con-
sidered scratch registers.

3. The return type should be int and you normally want to return 0 to allow interrupt processing further
interrupt chain.

Here is a simple example of how an Amiga interrupt definition may look:

int counter;

__attribute__((amiga_interrupt))
int irq () {

counter++;
return 0;

}

10.3. Attribute reference 49

Calypsi C compiler guide for the 68000, Release 3.5.1

Note: There is no interrupt vector associated with an Amiga interrupt definition. You need to use the Amiga
operating system calls to install the interrupt handler.

intrinsic

The intrinsic attribute is used to declare intrinsic built-in functions. This can only be done on intrinsic functions
that is already known to the compiler. Normally you use this by including the intrinsics68000.h file which
contains all such valid declarations.

task

A task attribute can be used on functions such as main which is the start of the application. You will not
normally call such functions from any C code. In that case you can apply the task attribute which relaxes
preserving registers that would otherwise be saved on the stack. This can save a little stack space and will
make the application a tiny bit smaller.

50 Chapter 10. Extended attributes

CHAPTER 11

Pragma directives

The pragma directives is amechanism in standard Cwhich allows vendor specific extensions to the C language,
while still keeping it portable to other C compilers.

You can use pragma directives to control and direct the behavior of the compiler. This can include suppressing
certain warnings or to control placement of an object to a certain memory area by using a custom section.

The pragma directives are always enabled by the compiler and you can use them either by the #pragma pre-
processor directive or the _Pragma preprocessor operator.

11.1 Pragma directives reference

This section goes through all available pragma directives.

11.1.1 Summary of pragmas

The following table summarizes the recognized pragma directives:

Pragma directive Description
#pragma clang section Control custom section for code or data
#pragma message Generate custom warning
#pragma GCC warning Generate custom warning
#pragma GCC error Generate custom error
#pragma clang diagnostic Control diagnostic messages inside a source file
#pragma require Force inclusion of other module

Note: As the C front end used is Clang, the same names are used when a pragma directive works the
same way. This is done to make it easier to switch between compilers, even if pragmas are vendor specific
extensions.

51

Calypsi C compiler guide for the 68000, Release 3.5.1

11.1.2 Description of pragma directives

section

The #pragma clang section directive makes it possible to assign section names to functions, global and static
objects.

The compiler will normally place global and static objects using predefined section names. In some cases you
may want to override it to control placement to a specific memory area.

The section names can be specified as:

#pragma clang section bss="myBSS" data="myData" rodata="myRodata" text="myText"

The section names can be reverted back to default name by supplying an empty string to the section kind, for
example:

#pragma clang section bss="" data="" text="" rodata=""

The new section name applies to all functions, global and static objects that follow from the pragma directive.

You are not required to define a name for every section category. If you omit some, the most previously one
seen is used.

The section attribute takes precedence over the clang section pragma directive. This means that if a section
name is specified using __attribute__((section(myname))), it has precedence.

Note: No interpretation of the section name is done. For example, naming a section .bss.mySec does not
mean it will be a bss section name.

message

You can generate a custom warning with message pragma. In addition there are a couple of GCC variants of
this supported:

// The following will generate warning messages
#pragma message "my own diagnostic message"
#pragma GCC warning "my own diagnostic message"

// This will give and error
#pragma GCC error "not supported"

diagnostics

You can control what diagnostic messages are enabled through the use of pragmas in the source code. This
is useful for turning off specific warnings in a section of source code.

The pragma may control any warning that can be used from the command line. Warnings may be set to
ignored, warning, error, or fatal.

In addition you can also push and pop the current warning state. This is particularly useful when writing a
header file that will be compiled by other people, because you dont know what warning flags they build with.

In the following example -Wextra-tokens is ignored for only a single line of code, after which the diagnostics
return to whatever state had previously existed.

52 Chapter 11. Pragma directives

Calypsi C compiler guide for the 68000, Release 3.5.1

#if foo
#endif foo // warning: extra tokens at end of #endif directive

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra-tokens"

#if foo
#endif foo // no warning

#pragma clang diagnostic pop

The push and pop pragmas will save and restore the full diagnostic state, regardless of how it was set.

require

The #pragma require directive can be used to ensure that some other module is included at the link stage
even if you do not call or reference any function or data object in it.

This is mainly intended to be used in libraries that can request code slices or objects to be included. One
example when this is used is in the heap system provided by the C library. If you use a function such as
malloc() there is a require pragma directive present in that module which will enable code in the C startup
to initialize the heap:

#pragma require __call_heap_initialize

11.1. Pragma directives reference 53

Calypsi C compiler guide for the 68000, Release 3.5.1

54 Chapter 11. Pragma directives

CHAPTER 12

Intrinsic functions

This chapter covers the available predefined intrinsic functions and built-in functions.

Intrinsics functions look like ordinary function calls, but are actually special constructs to the compiler that
makes it emit very specific instruction sequences.

To enable the use of intrinsics you need to include the header file intrinsics68000.h.

Built-in functions are similar, but they are not declared in the intrinsics68000.h.

12.1 Intrinsic functions reference

The intrinsics68000.h file looks as follows:

#ifndef __INTRINSICS_68000_H
#define __INTRINSICS_68000_H

#ifdef __CALYPSI_TARGET_M68K__

typedef unsigned short __interrupt_state_t;
typedef void (*__return_address_t)(void);

__attribute__((intrinsic)) void __disable_interrupts(void);
__attribute__((intrinsic)) void __enable_interrupts(void);
__attribute__((intrinsic)) __interrupt_state_t __get_interrupt_state(void);
__attribute__((intrinsic)) void __restore_interrupt_state(__interrupt_state_t);

__attribute__((intrinsic)) __return_address_t __get_return_address(void);
__attribute__((intrinsic)) void __set_return_address(__return_address_t);

__attribute__((intrinsic)) void __stop_processor(__interrupt_state_t);
__attribute__((intrinsic)) void __reset_processor();
__attribute__((intrinsic)) void __break_instruction(unsigned char);

(continues on next page)

55

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

#endif // __CALYPSI_TARGET_M68K__

#endif // __INTRINSICS_68000_H

12.1.1 Summary of intrinsic functions

Table 12.1: Intrinsic functions summary
Function name Description
__disable_interrupts Disables interrupts
__enable_interrupts Enables interrupts
__get_interrupt_state Gets the current interrupt status
__restore_interrupt_state Restores to a previous interrupt status
__get_return_address Gets the return address of the current function
__set_return_address Alters the return address of current function
__break_instruction Generate a BKPT instruction
__reset_processor Generate a RESET instruction
__stop_processor Stops the processor
__builtin_clz Count leading zeroes in an int
__builtin_clzl Count leading zeroes in a long
__builtin_clzll Count leading zeroes in a long long
__builtin_signbit Get the value of the sign bit

12.1.2 Description of intrinsic functions

This section describes each intrinsic function in detail.

__disable_interrupts

Emits a machine instruction that disables interrupts by setting the interrrupt level to 7.

Note: This can only be done in supervisor mode.

__enable_interrupts

Emits a machine instruction that enables interrupts by setting the interrrupt level to 0.

Note: This can only be done in supervisor mode.

__get_interrupt_state

Returns the current interrupt status as a value of type __interrupt_state_t. This can be used in the following
way:

56 Chapter 12. Intrinsic functions

Calypsi C compiler guide for the 68000, Release 3.5.1

int global;

void safe_increment () {
__interrupt_state_t state = __get_interrupt_state();
__disable_interrupts;
global++;
__restore_interrupt_state(state);

}

In the example the current state of interrupts is obtained and saved in state. The code then ensures interrupts
are disabled and then do the real work. Finally, the interrupt status is restored to what it was when the function
was entered.

Note: This can only be done in supervisor mode.

__restore_interrupt_state

Restores to a previous interrupt status, see example above.

Note: This can only be done in supervisor mode.

__get_return_address

Reads the return address of the current function from its the stack frame.

__set_return_address

Replaces the return address of the current function with the address found in the argument of
__set_return_address().

__break_instruction

Emits a machine instruction that causes a breakpoint exception. This takes a value between 0 and 7 which
encodes one of the 8 available software breakpoints.

__reset_processor

Emits the RESET instruction which has the effect of generating a reset to all external devices. Execution
continues with the next instruction.

Note: This can only be done in supervisor mode.

12.1. Intrinsic functions reference 57

Calypsi C compiler guide for the 68000, Release 3.5.1

__stop_processor

Emits an STOP instruction which takes an argument that is the value to set the processor status register to.
This stops execution until an interrupt of high enough priority is received.

Note: This can only be done in supervisor mode.

__builtin_clz

Count the number of leading zeroes in a provided int value. Returns an undefined result if input is zero.

__builtin_clzl

Count the number of leading zeroes in a provided long value. Returns an undefined result if input is zero.

__builtin_clzll

Count the number of leading zeroes in a provided long long value. Returns an undefined result if input is
zero.

__builtin_signbit

Returns the value (0 or 1) of the signbit of its input.

58 Chapter 12. Intrinsic functions

CHAPTER 13

Preprocessor

This chapter provides a brief description of the preprocessor and covers macros that are most commonly used.

13.1 Overview

The preprocessor adheres to Standard C and provides the following:

1. Predefined macros that makes it possible to inspect the compilation environment. This allows you to
fine tune your application based on properties provided by the compiler.

2. User defined macros, from the command line or set inside C source files.

3. Ability to dump the preprocessor environment in order to inspect it.

4. Ability to dump the source file as it is after running the preprocessor

13.1.1 Predefined macros

The following describes the macros which are the ones you are most likely to want to use in conditional builds.

__STDC__

This macro is set to 1 to indicate that this compiler adheres to Standard C.

__STDC_HOSTED__

This macro is defined to 0 to indicate that this is a cross compiler. You can test this using:

#if defined(__STDC_HOSTED__) && __STDC_HOSTED__ == 0

59

Calypsi C compiler guide for the 68000, Release 3.5.1

__STDC_VERSION__

This macro is set to 199901L to indicate that this compiler adheres to the ISO/IEC 9899:1999 standard.

__CALYPSI__

This macro is set to 1 to indicate that either the assembler or compiler being used is by Calypsi.

__CALYPSI_CC__

This is set to 1 to indicate this compiler is a Calypsi C compiler.

__CALYPSI_ASSEMBLER__

This macro is set to 1 when a Calypsi assembler is used.

__CALYPSI_VERSION_MAJOR__

This macro is set to the first number in the version number triplet.

__CALYPSI_VERSION_MINOR__

This macro is set to the second number in the version number triplet.

__CALYPSI_VERSION_FIX_LEVEL__

This macro is set to the third number in the version number triplet.

__BIG_ENDIAN__

This macro is defined if the target has big endian byte order.

__LITTLE_ENDIAN__

This macro is defined if the target has little endian byte order.

__BYTE_ORDER__

This macro defines the byte order. It has the same value as one of __ORDER_LITTLE_ENDIAN__,
__ORDER_BIG_ENDIAN__ or __ORDER_PDP_ENDIAN__.

Normally it is easier to use the __BIG_ENDIAN__ or __LITTLE_ENDIAN__macros to conditionally include source
code that is dependent on the endian behavior of the target.

__ORDER_LITTLE_ENDIAN__

This macro is defined to 1234 to describe the byte order in memory for a little endian target.

60 Chapter 13. Preprocessor

Calypsi C compiler guide for the 68000, Release 3.5.1

__ORDER_BIG_ENDIAN__

This macro is defined to 4321 to describe the byte order in memory for a big endian target.

__ORDER_PDP_ENDIAN__

This macro is defined to 3412 to describe the byte order in memory for a PDP endian target.

__CALYPSI_TARGET_M68K__

This macro is set to 1 to indicate that the target is the 68000 family.

__CALYPSI_CORE_68000__

This macro is set to 1 to indicate that the selected core is 68000. You can test if the core is 68000 using #ifdef
__CALYPSI_CORE_68000__.

__CALYPSI_CORE_68010__

This macro is set to 1 to indicate that the selected core is 68010. You can test if the core is 68010 using #ifdef
__CALYPSI_CORE_68010__.

__CALYPSI_TARGET_SYSTEM_EMBEDDED__

This macro is set to 1 to indicate that the compiler is configured for an embedded system, generating code
suitable to be put in a flash or ROM memory.

__CALYPSI_TARGET_SYSTEM_FOENIX__

This macro is set to 1 to indicate that the compiler is configured for the C256 Foenix.

__CALYPSI_CODE_MODEL_SMALL__

This macro is set to 1 if the compiler is configured to use the Small code model.

__CALYPSI_CODE_MODEL_LARGE__

This macro is set to 1 if the compiler is configured to use the Large code model.

__CALYPSI_DATA_MODEL_SMALL__

This macro is set to 1 if the compiler is configured to use the Small data model.

__CALYPSI_DATA_MODEL_LARGE__

This macro is set to 1 if the compiler is configured to use the Large data model.

13.1. Overview 61

Calypsi C compiler guide for the 68000, Release 3.5.1

__CALYPSI_DATA_MODEL_FAR_ONLY__

This macro is set to 1 if the compiler is configured to use the Far-only data model.

62 Chapter 13. Preprocessor

CHAPTER 14

Section reference

Code and data objects produced by the compiler end up in sections which are written to the object file output.
Having some understanding of sections helps writing linker placement files and is also useful when studying
list files produced by the compiler and linker.

14.1 Section overview

Code and data objects will in the end occupy space in target memory. This can be done in two ways, either
by providing actual bits to write to memory, which is called program-bits in ELF. A section can also take space
in target memory, but in the ELF object file it is only represented by a size, there are no actual values in the
object file, these are called no-bits in ELF.

The Calypsi C compiler tool chain has adapted names that trace back to the origins to the early days of
computing. These may not always be the best possible names, but they are widely known and familiar.

There are three major groups of sections, text, data and bss. Text sections are read-only program-bits sections.
Data are read-write program bits sections. Finally, bss corresponds to read-write no-bits sections.

Note: If you ever wondered about what bss section stands for, it originally is block started by symbol, a pseudo
operation in an assembler for IBM 704 from the mid fifties. Some people suggest it is easier to remember as
better save space, as it is a way to save space in object file by just storing the size of the section without any
explicit data bits.

14.1.1 Section names

A section has a name that identifies it. There can be many sections sharing the same name. The purpose of
the section name are twofold, one is to give it a descriptive name that identifies the section. The second is to
control placement in memory based on rules.

63

Calypsi C compiler guide for the 68000, Release 3.5.1

14.1.2 Section types

Each section has a type which are the already mentioned text, data and bss. However, for embedded systems
use, there are also rodata (read-only data) and no-init. Read-only data sections are essentially text sections,
with the minor difference that it identifies it as being data and not executable code. No-init sections are like
bss, but without the mechanism that clears the memory.

14.1.3 Data sections

Data sections in the view of the compiler are read-write program-bits sections, that is, they have initializer
values that will end up in memory. When you use a hosted compiler, such section is simply loaded to memory
before the program starts.

This will not work if the program is written to a flash memory and the program is expected to start when the
power is turned on.

To solve this problem the linker clones data sections. The original data section has its initializers removed
and is placed in RAM. The clone has a section name with an i prepended to it, e.g. if it was named data, it
will now become idata. This section is intended to be put in a flash (read-only) memory.

In order to initialize data sections when power is turned on, a copy routine is inserted before the main()
function is called. This routine copies the initializers from flash to RAM to initializer the datamemory. Clearing
bss sections are also taken care of by this routine.

What is copied and cleared is described in a table that is created by the linker. This table is implemented by
a linker created section names data_init_table.

Note: On certain targets the Calypsi C compiler tool chain can be used to cross compile executable binaries
intended to be loaded and executed from an operating system. This is supported by the --hosted command
line option. The effect of this is to not clone data section as it would mean duplication. In such environment
there is still a need for the table driven initializer to handle bss sections.

14.2 Sections used by the compiler

The following sections are sections used by the Calypsi C compiler tool chain.

Table 14.1: Sections
Section name Type Memory

kind
Description

code text ROM Executable code
nearcode text ROM Executable near code
znear bss RAM bss (zero initialized) near data
near data RAM Initialized near data
zfar bss RAM bss (zero initialized) far data
far data RAM Initialized far data
cfar rodata ROM Constant far data
switch rodata ROM Switch tables
inear rodata ROM Near data initializers
ifar rodata ROM Far data initializers
data_init_table rodata ROM Data initializer table

64 Chapter 14. Section reference

Calypsi C compiler guide for the 68000, Release 3.5.1

The sections inear, ifar, ihuge and data_init_table in the table above are linker generated.

Note: It is assumed that there are no ROM or flash in either the Near area. Constants placed in either of
those are placed in a normal writable section and the const attribute only affects the type of the object.

Note: The table assigns certain sections to ROM and others to RAM. This is how it works for a ROM based
application where power is applied and the application starts. When building an application for a hosted
system where it is loaded from some storage media to RAM, this distinction may not apply. In any case, you
should regard sections marked as ROM to be read-only.

14.2.1 The vector section

An interrupt function will have an associated vector. This is a specially named section for the purpose of hold-
ing a single vector. The name looks something like $$interruptVector_0x00000000. The intended address
of the vector is encoded in the section name and the linker recognizes these and will place the vector at the
address specified. This is handled without the help of any section placement rules.

14.2.2 Section reference

The following goes through the available sections in detail.

code

Holds program code, address range 0x00000000-0xffffffff. This section is intended to be placed in a flash
or ROM memory.

nearcode

Holds program code, address range 0x00000000-0xffffffff but limited to about 32K. Code in this section
treats function calls as being reachable with the BSR instruction that takes a signed 16 bits offset, which means
all calls are assumed to be reachable.

The comp

znear

Holds zero initialized (bss) data reachable using base relative from register A4, up to 64K in total.

near

Holds zero initialized (bss) data reachable using base relative from register A4, up to 64K in total.

zfar

Holds zero initialized (bss) data in the main memory, address range 0x00000000-0xffffffff.

14.2. Sections used by the compiler 65

Calypsi C compiler guide for the 68000, Release 3.5.1

far

Holds non-zero initialized data in the main memory, address range 0x00000000-0xffffffff.

cfar

Holds initialized constant data in the main memory, address range 0x00000000-0xffffffff. This section is
intended to be placed in a flash or ROM memory.

switch

Holds switch tables in the main memory, address range 0x00000000-0xffffffff. This section is intended to
be placed in a flash or ROM memory.

inear

Holds initializers for the near section. This section is created by the linker by cloning the near section provided
by the compiler. This section is placed in the main memory, address range 0x00000000-0xffffffff and needs
to be placed in a flash or ROM. This section is not used when linking for a hosted system.

ifar

Holds initializers for the far section. This section is created by the linker by cloning the far section provided
by the compiler. This section is placed in the main memory, address range 0x00000000-0xffffffff and needs
to be placed in a flash or ROM. This section is not used when linking for a hosted system.

data_init_table

This section is created by the linker and filled in with information to the C startup code on how to copy and
clear memory regions to properly initialize the data object before giving control to main(). This section is
placed in the main memory, address range 0x00000000-0xffffffff.

66 Chapter 14. Section reference

CHAPTER 15

Runtime library

This chapter describes the supplied C runtime library which is adapted from the Apache NuttX library.

15.1 Design considerations

The Apache NuttX library in its original form is a conglomerate of library routines from the C standard library,
POSIX standard as well as other things commonly found in real-time operating systems.

It is a scalable and highly configurable runtime library that works in both 8-bits and 32-bits environments.

In this adapted version it is turned into a Standard C library where the POSIX and RTOS style parts are either
removed or disabled.

Apart from that, the following are the key changes:

• Header files that are very closely related to the compiler e.g. stddef.h, stdarg.h, setjmp.h, stdint.h
are replaced.

• Internal names are changed so they either start with double underscores, or single underscore followed
by a capital letter. This is done to avoid polluting the namespace as a C library as such identifiers are
set aside for the compiler vendor.

• The stub interface are using names prefixed by _Stub rather than up_ to make it more clear what it is,
but also for the reason mentioned above.

Note: The Apache NuttX library comes with a configuration utility intended to tailor it to a specific envi-
ronment. This configuration utility is not used here and the build system is different. This makes the library
ready to use without much of a configuration step at all. This is possible to do as the compiler used is known
and target board specific matters are not part of it. Some of the library functions exist in different versions,
mainly to assist in reducing the memory footprint by making certain capabilities optional, e.g. formatters, see
Library on a diet.

67

Calypsi C compiler guide for the 68000, Release 3.5.1

15.2 Using the library

The C library consists of header files that are immediately available to use by the compiler and can be included:

#include <stdio.h>

int main () {
printf("Hello World!\n");
return 0;

}

To link with the library you will need to add the library to the command line:

$ ln68k main.o clib-68000-lc-sd.a linker-rules.scm

The actual name of the library depends on the setting you have used with the compiler. There are runtime
attributes in the object and library files that prevents object files compiled in different way that makes them
incompatible from being linked together.

15.3 Provided library files

The following table lists the provided ready to use library files:

Table 15.1: Sections
Library name Code model Data model Size of double Target system
clib-68000-sc-sd.a Small Small 32 bits Generic
clib-68000-lc-sd.a Large Small 32 bits Generic
clib-68000-sc-ld.a Small Large 32 bits Generic
clib-68000-lc-ld.a Large Large 32 bits Generic
clib-68000-sc-fod.a Small Far-only 32 bits Generic
clib-68000-lc-fod.a Large Far-only 32 bits Generic
clib-68000-sc-sd-double64.a Small Small 64 bits Generic
clib-68000-lc-sd-double64.a Large Small 64 bits Generic
clib-68000-sc-ld-double64.a Small Large 64 bits Generic
clib-68000-lc-ld-double64.a Large Large 64 bits Generic
clib-68000-sc-fod-double64.a Small Far-only 64 bits Generic
clib-68000-lc-fod-double64.a Large Far-only 64 bits Generic
clib-68000-sc-sd-Foenix.a Small Small 32 bits Foenix
clib-68000-lc-sd-Foenix.a Large Small 32 bits Foenix
clib-68000-sc-ld-Foenix.a Small Large 32 bits Foenix
clib-68000-lc-ld-Foenix.a Large Large 32 bits Foenix
clib-68000-sc-fod-Foenix.a Small Far-only 32 bits Foenix
clib-68000-lc-fod-Foenix.a Large Far-only 32 bits Foenix
clib-68000-sc-sd-double64-Foenix.a Small Small 64 bits Foenix
clib-68000-lc-sd-double64-Foenix.a Large Small 64 bits Foenix
clib-68000-sc-ld-double64-Foenix.a Small Large 64 bits Foenix
clib-68000-lc-ld-double64-Foenix.a Large Large 64 bits Foenix
clib-68000-sc-fod-double64-Foenix.a Small Far-only 64 bits Foenix
clib-68000-lc-fod-double64-Foenix.a Large Far-only 64 bits Foenix

68 Chapter 15. Runtime library

Calypsi C compiler guide for the 68000, Release 3.5.1

15.4 Stub interface

How to provide functions such as fopen(), fprintf() or even assert()when it is a cross compiler that cannot
possibly know about the final execution environment of the application? It may not even have a file system.

The answer is that functions like fprintf() goes through some layers of library functions, that may deal with
formatting, buffered I/O, some stream interface, but in the end it needs to actually output characters to some
display or file. This is solved by a simple stub API which is defined in the stubs.h header file.

The Calypsi C compiler tool chain comes with a semi-hosted debug implementation of the stub API, which
is supplied in the normal C library. To enable support for semi-hosting, add the command line option
--semi-hosted to the linker command line. The actual stub modules are included in the C library, but they
are ignored by default.

When linked with semi-hosted stubs the db68k source debugger can detect the stub actions and perform
the actions in the debugger environment. This way the application can output characters to a console or to
a file that is on your host computer. This can also handle things such as assert. While this is very useful
for debugging purposes, you will in the end need to provide small stub functions that work with execution
environment of you application for any stub functions used in the final application.

Note: Even if you enable some stub actions in you application, you can link with --semi-hosted to get semi-
hosted support for the stub actions you do not implement. This can be used if you implement a file system, but
you may still want to use the assert() in the semi-hosted mechanism. This works as the semi-hosted stubs in
the C library have been compiled with --weak-symbols, which means any stub function you implement takes
precedence, but in case you leave some stub unimplemented, the weak semi-hosted variant will be used.

The stubs.h file looks as follows:

#ifndef __INCLUDE_STUBS_H
#define __INCLUDE_STUBS_H

#include <nuttx/config.h>
#include <nuttx/compiler.h>

#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>

/**
* Public Data
**/

#if defined(__cplusplus)
extern "C"
{
#endif

/**
* Debug interfaces exported by the architecture-specific logic
**/

/**
* Name: _Stub_putchar
*
* Description:

(continues on next page)

15.4. Stub interface 69

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

* Output one character on the console
*
**/

int _Stub_putchar(int ch);

/**
* Name: _Stub_puts
*
* Description:
* Output a string on the console
*
**/

int _Stub_puts(const char *str);

/**
* Name: _Stub_raise
*
* Description:
* Handle a raised signal
*
**/

int _Stub_raise(int signo);

/**
* Name: _Stub_open
*
* Description:
* Open a file.
* The oflag argument are POSIX style mode flags, e.g O_RDONLY which
* are defined in fcntl.h.
* This function is variadic as it optionally can take a mode_t that
* are permissions, e.g 0666. If the file system does not handle
* permissions you can ignore that this function is variadic.
*
**/

int _Stub_open(const char *path, int oflag, ...);

/**
* Name: _Stub_close
*
* Description:
* Close a file
*
**/

int _Stub_close(int fd);

/**
* Name: _Stub_lseek
*
* Description:
* Change position in a file

(continues on next page)

70 Chapter 15. Runtime library

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

*
**/

long _Stub_lseek(int fd, long offset, int whence);

/**
* Name: _Stub_read
*
* Description:
* Read from a file
*
**/

size_t _Stub_read(int fd, void *buf, size_t count);

/**
* Name: _Stub_write
*
* Description:
* Write to a file
*
**/

size_t _Stub_write(int fd, const void *buf, size_t count);

/**
* Name: _Stub_ioctl
*
* Description:
* Control a device
*
**/

int _Stub_ioctl(int fd, unsigned long request, ...);

/**
* Name: _Stub_exit
*
* Description:
* Terminate the program with an exit code, exit clean-ups are done
* before this function is (finally) called.
*
**/

void _Stub_exit(int exitCode) __noreturn_function;

/**
* Name: _Stub_assert
*
* Description:
* Handle an assertion
*
**/

#ifdef _CONFIG_HAVE_FILENAME
void _Stub_assert(const char *filename, int linenum) __noreturn_function;

(continues on next page)

15.4. Stub interface 71

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

#else
void _Stub_assert() __noreturn_function;
#endif

#if defined(__cplusplus)
}
#endif

#endif /* __INCLUDE_STUBS_H */

15.4.1 Custom I/O

You can provide your own low level I/O stubs. File descriptors at this levels are just integers that acts as index
to some internal look up table, typically an array. The library is by default configured with six streams. The
first three (file descriptor index 0-2) are the well known stdin`, ``stdout and stderr. They are typically
bound to some kind of console, or standard output device. The streams after that are given no names, and
can be used to implement file access or for custom streams.

The constant _CONFIG_NFILE_STREAMS found in <nuttx/config.h> defines the number of streams available.

15.5 Examine use of library

When working with a memory constrained system there is always a risk of running out of memory. Even
when you are within the limits, it can still be good to know what is going on. To help with this the linker can
produce a list file optionally with cross reference information. This is a valuable tool as it can tell you what
has been placed in memory, where it is placed and why is it even there taking up space.

You can tell the linker to provide a list file in the following way:

$ ln68k main.o clib-68000-lc-sd.a linker-rules.scm --list-file=project.lst --cross-reference

This will result in a list file names project.lst which contains several parts showing things such as:

• A summary of the memories

• An overview of sections and where they take space in the memories

• The object files used and from which library they have been extracted from

• Complete cross reference, showing where every section fragment is located with its size, with:

– What symbols are defined

– What symbols are referenced

– Who is referencing me

• An overall summary of total memory size

15.6 Library on a diet

If you are using the C library in a memory constrained system you may find that it quickly can consume code
space. The reason for this is that the C library contains a decent amount of functionality and many functions

72 Chapter 15. Runtime library

Calypsi C compiler guide for the 68000, Release 3.5.1

acts a simple to use facades which actually covers a fair amount of code.

There are ways to tune things to reduce the memory foot print, but as always, you first need to understand
what is going on and then consider what you want to do, if it becomes a problem.

15.6.1 Formatters

The C library contains different version of formatters which you can select depending on what capabilities
you need. You can select a printf() formatter by specifying the variant you want on the command line to
the linker using the --rtattr option:

$ ln68k --rtattr printf=nofloat files...

The default print formatter is reduced. The following table describes the available print formatters:

Table 15.2: Print formatters
Capability printf=reduced printf=medium printf=nofloat printf=float
basics, c d i o p s u X x % yes yes yes yes
format flag, 0 + - # no yes yes yes
field width no yes yes yes
long long no no yes yes
float, e f g E F G no no no yes

Also the scanf() function exits in two variants, depending on if you want support for floating point numbers
or not:

Table 15.3: Read formatters
Capability scanf=medium scanf=nofloat scanf=float
basics, c d i o p s u X x % yes yes yes
long long no yes yes
float, e f g E F G no no yes

15.6.2 Reduced exit

Terminating the application includes code to close open files and run atexit() functions. Some applications,
especially embedded applications are never meant to exit and having code to handle termination may be
redundant. Also, closing any open files means that you need to have additional code related to files.

Also leaving main() means there is an implicit call the exit(). If having proper exit code is undesirable you
may want to take actions to exclude it.

The simplest way to reduce the overhead of the exit code is to add --rtattr exit=simplified to the linker
command line. This has the effect of not closing any open files or calling any atext() handlers. This will cause
exit() to immediately jump to _Stub_exit() which is the name of the lowest level termination routine.

15.6.3 Consider alternatives

If library still occupy too much space, you may replace certain functions with smaller and less flexible alter-
natives.

15.6. Library on a diet 73

Calypsi C compiler guide for the 68000, Release 3.5.1

15.7 System startup

The initial system configuration is performed by the C startup module. This object module is included in the
standard C library.

The C startup module is responsible for setting up the execution environment before giving control to the
main() function. This typically includes setting up the stack pointer and providing initial values to static
variables.

The C startup module also contains a couple of small optional sections that are only included if needed. They
are responsible for initializing optional parts of the run-time system, such as the heap and the file streams.

If you do not use functions such as malloc(), the heap is not needed and the code to initialize the heap
memory system is omitted. The same happens for file streams. If there are no file streams used, the code
related to initializing and terminating them are omitted. This is done in order to reduce the memory footprint
of the final application.

In case you want to study the source code of the C startup module it can be found at src/lib/lowlevel/
cstartup.s under the installation directory.

15.7.1 Customizing startup

In many cases the C startup module will probably work fine without any special changes. However, there are
a couple of typical situations when some custom configuration is needed. One example is that the memory
system needs to be configured immediately at power on, or if your application is going to run under an
operating system that may impose special rules on initialization and termination.

If you only need to run some code to perform early initialization of the hardware you can provide your own
__low_level_init() function which is called early in the startup module, before any static C variables are
given their start values.

If you need to make actual changes to the C startup module the easiest way is to copy the existing one to your
project, make changes as required and include it in your build system.

To be able to properly suppress the C startup module in the C library you need to provide a different value for
the cstartup run-time attribute in your own cstartup.s. The cstartup.s assembly source file starts with:

;;; Startup variant, change attribute value if you make your own
.rtmodel cstartup,"normal"

You need to change the value normal to something else. What value you use does not matter so much, but
using a descriptive value is probably a good idea:

;;; Startup variant, change attribute value if you make your own
.rtmodel cstartup,"mycustom"

The modified C startup source file needs to be included in your build system. The linker also needs to be
informed that it should use a specific C startup module, which is done using the --rtattr command line
option:

% ln68k <object-files> <your-startup.o> clib-68000-lc-sd.a --rtattr cstartup=mycustom

Note: The C startup module has been carfully crafted to have a small footprint and to properly initialize the
C run-time system. Even though it makes calls to handle the file system, initialize data areas and the heap, it
is done in such way that the actual code is only included in the final application if these subsystems are used.

74 Chapter 15. Runtime library

Calypsi C compiler guide for the 68000, Release 3.5.1

A good understanding of the tools and the provided C run-time is needed in order to make non-trivial changes
to the C startup module. Incorrectly made changes may cause linker errors, unused subsystem being pulled
in, or result in a run-time that is not properly initialized.

15.8 Time and date

The provided C library implements the functions and definitions in the time.h system header file. The time
related types are defined as 64-bit types to avoid the year 2038 problem and reduce issues with overflow.

15.8.1 Providing a time

C defines two functions clock() and time() that provides a concept of a time. The library provides a default
implementation for them that returns a value with all bits set, which means that the time is not available.

To use actual times you will need to provide your own implementation of clock() or time() and include it
in your project.

The CLOCKS_PER_SEC macro is set to 1000 by the stdint.h header file.

15.8. Time and date 75

Calypsi C compiler guide for the 68000, Release 3.5.1

76 Chapter 15. Runtime library

CHAPTER 16

The optimizer

The compiler is capable of applying a range of optimizations which are aimed to reduce code size and increase
performance.

It is beyond to scope of this chapter to go through all the optimizations that are applied. Instead it looks at
how you can control optimizations and some aspects that may be useful to know.

16.1 Overview

By default the compiler performs basic rewrites, performs code selection that utilizes the instruction set well
and attempts to make good use of the internal registers of the CPU.

The resulting application is in general well suited for debugging purposes. Many optimization passes are
disabled by default.

16.1.1 General settings

You can enable optimizations on a broader scale using the following command line options.

-O1

Enable some optimization passes.

--O2

Enable all provided optimization passes.

--speed

Allow application size to grow in order to make the application run faster.

77

Calypsi C compiler guide for the 68000, Release 3.5.1

--space

Tune optimizations more towards making the application small. This is the default.

16.2 Function inlining

Instead of making a call to a function, the body of a function can be expanded at the call site. This will
typically increase performance, but may result in larger code size.

Function inlining may be beneficial on code size for small functions as the inserted function body becomes tai-
lored to the particular code surrounding it. Normally when making a function call there is a calling convention
that has to be followed which puts restrictions on how registers are used.

Inlining is enabled by specifying at least -O1.

16.2.1 The inline keyword

The inline keyword in C is sometimes misunderstood. Its purpose is to expose a function body to many
compilation units and hint that the function may be inline expanded instead of making an ordinary call to
it. There is no guarantee that a function marked as inline is actually inlined, this decision is taken by the
compiler. Futhermore, the compiler may also choose to inline functions that are not marked as inline.

16.2.2 Using the inline keyword

A function marked as inline is normally placed in a header file to allow it to be used by multiple compilation
units:

inline max (int a, int b) {
if (a > b) {

return a;
} else {

return b;
}

}

An inline function can also be marked as static inline in a similar way:

static inline max (int a, int b) {
if (a > b) {

return a;
} else {

return b;
}

}

You can use functions marked as inline or static inline in the same way as any other function. They can
be called and in that case they may be subject to inline expansion and you can store it as a function pointer
and make calls to it using that function pointer.

There are two cases when a function marked as inline or static inline requires a separate copy of the
function. First, the compiler may choose to make an ordinary function call to it. Second, a function marked
as inline may be stored in a function pointer.

78 Chapter 16. The optimizer

Calypsi C compiler guide for the 68000, Release 3.5.1

16.2.3 Variants of inline functions

As hinted in the previous section, there are two kinds of inline functions, plain inline and static inline.
As long as the compiler chose to do inline expansion these two variants work identically. They differ when
the compiler choose to not inline expand it and make an ordinary function call instead.

inline

A function is marked as inline does not cause the compiler to generate a separate definition of the function.
If such separate function is needed, it is assumed that one compilation unit provides the definition using the
extern keyword:

extern inline max (int a, int b);

This should be placed in an ordinary C source file, not a header file.

In most cases you will need to tell the compiler to actually generate such separate function using an extern
declaration somewhere. If you do not do this and the function is required by the application, a linker error
will result that tells you that the function is not defined.

The main benefit of using inline rather than static inline is that you are ensured that there will be at most
one separate definition of the function.

Note: One subtle benefit with inline has over static inline is that if you really must expand the function
inline, then you can omit the extern declaration of the function. The linker will then let you know that the
required inline expansion did not happen. In this case you most likely want to specify the command line
option --always-inline to ensure that the inliner is always used.

static inline

The compiler will generate a static standalone version of a static inline function whenever there is a need
for it. Being static it is local to the compilation unit with no external linkage.

This means that if you make use of the same static inline function in several compilation units, there may
be multiple copies of the same function.

Note: If you take the address of the same static inline function in different translation units then the
result will not compare equal.

Note: While it is slightly easier to use a static inline function as you do not need to provide a single extern
declaration, it comes with the cost of potentially having duplicate code in the final application.

16.2.4 Controlling inlining

The compiler will apply it own decisions on what to inline and what to use normal function calls for. Small
simple functions and static functions with only a single use are prime candidates.

There are a couple of command line options that allow for tuning which functions are considered for inlining:

16.2. Function inlining 79

Calypsi C compiler guide for the 68000, Release 3.5.1

--always-inline

Always enable the inliner, no matter which optimization level is used.

This is useful if you functions you always want to be inlined.

--no-inline

Do not perform any inlining at all.

--only-marked-as-inline

Only consider functions that have the inline keyword. This prevents functions not marked as inline from
being considered for inlining.

--strong-inline

Try to obey the inline keyword. This relaxes some of the requirements, such as that the function must be
small enough. This is a strong hint that we really want functions marked for inlining to be inlined. The
compiler may still refuse to inline a function.

Note: There are a number of reasons why the compiler may refuse to inline a function, e.g. used recursively,
there is no prototype, it uses a variable argument list or it uses variable length arrays.

16.3 Cross call

This optimization pass can sometimes result in quite significant savings on the application size. It examines
the almost final program looking for instruction sequences that are identical. Such sequences are lifted out to
separate subroutines which are called instead. This takes in account the size of the code sequences as well as
how many times they appear.

16.3.1 Controlling cross call

Cross call is enabled by specifying at least -O2. Even though cross call is focusing on the application size, it is
enabled even when the --speed command line option is specified, as the savings on code space can sometimes
be quite significant.

--no-cross-call

This option disables the cross call optimization. This can be used with -O2 when you want to avoid the
subroutine call overhead that cross call will introduce.

80 Chapter 16. The optimizer

CHAPTER 17

Assembly language interface

Assembly language is a symbolic way to access the actual machine instructions that the target machine is
going to execute.

In certain situations you may want to control actual machine instructions being used. This can be because you
need to use certain specfic instructions that cannot be expressed with normal C code. In some cases you may
want very specific machine instruction sequences for interacting with hardware, interacting with exception
stack frames, implement precise timing sequences or to implement a performance critical routine.

17.1 Intrinsic functions

The compiler provides some intrinsic functions declared in the intrinsics68000.h file. An intrinsic functions
looks exactly like an ordinary function in use, but instead of making a function call, it generates a very specific
sequence of instructions.

As an example, the intrinsic function __disable_interrupts() will emit machine instructions to disables
normal interrupts. See Intrinsic functions for more information.

17.2 Assembly functions

The easiest way to access a routine written in assembly language is to implement a function in assembly
language and call it like any other function from C. This requires that you follow the normal calling convention
interface.

There is sometimes the thinking that it is better to use an inline assembler instead, but in reality they both
have their pros and cons. The advantage of writing the code as an assembly function is that it provides a
better separation between C and assembly which aids portability. The normal C calling convention is used.
This specifies how to transfer values to the called function and handle return values.

There is a tiny amount of boiler plate assembly code to write, mainly to put the routine in a suitable section
and to declare any public symbols. The assembly code is also put in a separate file which needs to be added
to the build system.

81

Calypsi C compiler guide for the 68000, Release 3.5.1

Assembly language files usually have the file extension .s or .asm, but it varies wildly as assembly language
itself is not standardized in any way.

The assembler provided by the Calypsi C compiler tool chain is modeled in a similar way as UNIX assemblers.
Directives starts with a dot to avoid name clashes with instructions, which varies wildly between different
targets. This allows a certain directive to be named the same way for a wide range of targets without any risk
for naming conflicts.

As a bareminimum you need to declare the section and export your function name using the .public directive:

.section code

.public myFunction ; export myFunction
myFunction: add.l d1,d0 ; just add the inputs

rts

To be able to call this function properly you need to provide a prototype on the C side:

extern int myFunction(int a, int b);

int caller(int x) {
return myFunction(5, x);

}

17.3 Calling convention

The calling convention is fairly complex in all its details, but for most common situations it is reasonable
simple.

If parameters are passed on the stack the caller is responsible for doing any cleanup. The called function can
use any register resource, but it must obey that certain registers are to be preserved. If using registers that
shall be preserved, the called function is responsible for saving the current value and then restore it before
giving control back.

Parameters are passed in the D0, D1, A0 and A1 registers. These registers are destroyed by a function call. All
other registers to be preserved by a function call.

Table 17.1: Parameter registers
Register Size Types
D0.B 8 char
D1.B 8 char
D0.W 16 short
D1.W 16 short
D0.L 32 int, long, float
D1.L 32 int, long, float
A0 32 data and function pointers
A1 32 data and function pointers
D0:D1 ‘‘ 64 long long

Parameters are bound to register left to right on a first fit basis. If a parameter register has to be skipped over,
it will considered again for later parameters. Parameters that cannot be fit into registers are passed on the
stack.

82 Chapter 17. Assembly language interface

Calypsi C compiler guide for the 68000, Release 3.5.1

Table 17.2: Return values
Register Size Types
D0.B 8 char
D0.W 16 short
D0.L 32

int, long, float data and function pointers

17.3.1 64 bits values

The above tables do not mention 64 bits values. A 64 bits value such as long long and long double is passed
by reference, that is, as a pointer to the value. The size of this pointer is the same as the default pointer size
and is either 16 bits or 24 bits depending on the data model used.

If the function returns a 64 bits value, the caller is responsible for allocating space for it, then add an extra
invisible parameter to the function that holds a pointer to it. The called function is expected to return that
pointer.

17.3.2 Structure passing

Structure parameters are passed on the stack. If the function returns a structure, the caller is responsible
for allocating space for it, then add an extra invisible parameter to the function call. The called function is
expected to return that pointer.

17.3. Calling convention 83

Calypsi C compiler guide for the 68000, Release 3.5.1

84 Chapter 17. Assembly language interface

CHAPTER 18

Assembler

The assembler allows you to write assembly source files that can be used in C project. It is also possible to
create pure assembly language projects.

18.1 Overview

Unlike Standard C there is no such thing as a standard assembly language. The syntax for assembly instruc-
tions used by the 68000 assembler mostly follows what is outlined in guides made by the vendor of instruction
set.

Expressions used in the assembly source are heavily inspired by C style operators and precedence rules.

The assembler will run the assembly source code through the C preprocessor which means you can use C
comments, include files and do conditional inclusion in the same way as you would do in C.

Directives are mostly specific to the Calypsi C compiler tool chain and for the most part they look the same
for all products provided by Calypsi. Directive names also start with a leading dot. This is common in many
assemblers, but not universal.

Note: The main reason the dot prefix is adapted here is to avoid potential future conflicts in new products
which could have a named mnemonic that could clash with a commonly used directive in the product line.
Using a leading dot is a way to prevent future conflicts. It is also fairly common for assemblers to have a
leading dot which makes the directive stand out in the source code.

18.2 Syntax

18.2.1 Source file format

Source lines in the assembly source follows the traditional style, with a label field starting in the first column,
followed by a instruction that may take one or more operands. Comments are preceded by a semicolon that

85

Calypsi C compiler guide for the 68000, Release 3.5.1

is mandatory:

[label[:]] [instruction [operands]] [; comment]

The instruction can either be a mnemonic (name of a target instruction) or a directive. All directives start
with a leading dot that is part of its name.

A label is a symbol that describes a location. It can be defined by placing it in the first column of a source
line, optionally followed by a colon.

Labels can also be declared by importing it using the .extern directive.

Predefined words used in instructions (mnemonics and operands) are case insensitive, however symbols are
case sensitive. Some examples of source lines follows:

; Assembler comments start with a semi-colon
;
Loop: subq.l #1,d0 ; assembler comment

nop
BNE.S Loop

18.2.2 Symbol syntax

Symbols are case sensitive and can be of arbitrary length. A symbol starts with a letter or underscore and can
be followed by letters, underscores and digits. Examples of symbols are _4, a_symbol, abc and A1.

It is permitted to use any character in a symbol, but in that case the symbol must be quoted using a back-tick.
Such symbols can be `another symbol` and `Table: 5`.

The reason why predefined words are case insensitive is that both upper case and lower case assembly styles
are wildly used.

Intermixing symbols with the same name but using different case is possible, but may be regard as bad style.
The main reason why symbols are case sensitive in as68k is that C has case sensitive symbols and one of the
duties of the assembler is to support the C compiler. It also forces mixed case symbols to be consistent in the
assembly source code, which can be considered good style.

18.2.3 Preprocessor

The assembler uses a full featured C preprocessor to handle the input source file. The preprocessor provides
the normal features you will find in a C preprocessor, the ability to include header files, macro expansions,
conditional compilation and use of C style comments.

Wikipedia is a good place to look for an introduction with many examples on how to use the C preprocessor1.

See the Predefined macros for available predefined macros, most of them are also relevant when running the
assembler.

18.3 Sections

The assembly source file is divided into sections using the .section directive. A section is a unit of code or
data that cannot be split up in smaller pieces. Sections are laid out in memory by the linker according to rules
provided by a placement rules file.

1 http://en.wikipedia.org/wiki/C_preprocessor

86 Chapter 18. Assembler

http://en.wikipedia.org/wiki/C_preprocessor

Calypsi C compiler guide for the 68000, Release 3.5.1

If you do not specify any .section directive the assembler pretends there has been a .section code in the
source file. This means you will start off in a section named code unless told otherwise.

Using multiple sections allow more flexible placement of code and data by the linker compared to using
a single section. A section name can be used multiple times and each use results in an individual section
fragment.

All sections are relocatable and must be defined in the linker rules file.

18.3.1 Section kinds

The following table describes the different kinds of supported sections. If not specified, the section is assumed
to be text.

Section kinds and modifiers are case insensitive.

Section kind Description
text Executable code.
data An initialized data section in read/write memory (RAM).
rodata An initialized data section in read only memory (ROM).
bss Block Started by Symbol, intended to hold variables that are not given a value

yet. A C compiler would normally zero fill such area before calling main().

18.3.2 Section modifiers

A section modifier can be used to describe further behavior of the section. There are two such modifiers which
can be specified either as positive or negative.

Section modifier Description
noreorder Obey the relative order between section fragments of the same name as en-

countered in a translation unit.
reorder Allow section fragment to be placed in arbitrary order relative to other sections

with the same name. (This is the default).
root Always include this section fragment in the program. This is the default for

object files.
noroot Only include this section fragment in the program if someone refer to a label

inside it. This is the default for library files.

Note: Section fragments with the same name an noreorder modifier are combined by the linker into a
placement group that is placed as a single unit. The effect of reorder (or lack of noreorder) is that the section
fragment is given its own placement group. This also have the effect that any following section fragments
are combined in a new group separate from any section fragments before it. Thus, a section fragment with
reorder not only causes it to be placed separately from the previous ones, it also makes a placement or
noreorder sections before and after it separate placement groups.

18.3.3 Section alignment

The .align directive specifies a given alignment in address units. It ensures that the next location will have
the specified alignment. This is done by advancing the location and inserting fillers if needed.

18.3. Sections 87

Calypsi C compiler guide for the 68000, Release 3.5.1

; Ensure that "table" label is placed at an address that can be
; evenly divided by 4.

.section data

...

.align 4
table: ...

18.4 Expressions

Numeric expressions work in signed (2-complement) mode with a range check that depends on how the value
is used. An error will result if the value exceeds its possible range. The Operators table shows the existing
standard operators. In addition to these, there are also some specialized relocation and section operators,
refer to Relocation operators and Section operators for more details.

You can use optionally use spaces between values and operators in an expression.

Table 18.1: Operators
Operator Precedence Purpose
~ 9 Unary bit-wise not
! 9 Unary logical not
- 9 Unary negate
+ 9 Unary plus
* 8 Multiply
/ 8 Divide
% 8 Modulo
+ 7 Add
- 7 Subtract
<< 6 Bit shift left
>> 6 Bit shift right
> 5 Greater than
< 5 Less than
>= 5 Greater than or equal
<= 5 Less than or equal
== 4 Equal
!= 4 Not equal
& 3 Bit-wise and
^ 2 Bit-wise exclusive or
| 1 Bit-wise or

18.5 Numeric constants

Integer constants values can be entered in decimal, binary, octal or hexadecimal. A sequence of digits that do
not start with a zero is considered to be a decimal integer value. Any sequence starting with 0x is considered
a hexadecimal integer value, a 0b prefix is considered a binary integer value and any other sequence of digits
starting with 0 is considered to be an octal integer value.

Character constants can also be used and they are replaced by their corresponding ASCII value.

Some examples:

88 Chapter 18. Assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

table: .byte 0x1ff ; hexadecimal number
.byte 077 ; octal number (corresponds to decimal 63)
.byte 65 ; decimal 65
.byte 'A' ; ASCII 65 (decimal)
.byte 0b1011 ; binary (corresponds to decimal 11)
.byte 0 ; zero (actually octal, but it is written

; the same way in decimal)

18.6 Location counter

The assembler converts the source program into machine code that can run on the 68000 processor. Each
instruction will end up at some location in memory in consecutive order until the next .section directive (or
end of file is reached). The address of the current instruction can be accessed by a single period (.), usually
referred to as dot.

The dot label which contains the current instruction location is also called the location counter and it is incre-
mented after each instruction so that it always contains the value of the start address of the current instruction.

The actual address value of the location counter is not known before the program is linked, but it can still be
used in expressions. Short branches can be expressed using the location counter:

test: tst.l (10,a0)
lda (table),y
bpl.s .+4 ; skip next instruction of positive
subq.l #4,d0

However, it is often better to use labels or local labels instead, see below.

18.7 Local labels

Local labels start with a number and end with a dollar sign, i.e. 3$. A local label is active between two
non-local labels and cannot be exported to the linker. They are meant to be used as temporary locations for
short distance branching, typically short skips or local loops.

10$: tst.l (a0)+
beq.s 15$
subq.l #1,d0
bne.s 10$
bra.s 50$

15$: move.q #7,d0

After a non-local label, you can no longer refer to any local label before it. Consider if the following code is
added below the one above, the presence of the non-local label foo resets the local lables:

foo: subq.l #1,d2
bne.s 10$; error, 10$ above no longer visible

As an alternative, you can use ordinary labels related to the context and add a number to make it unique.
What you do is mostly a matter of taste.

18.6. Location counter 89

Calypsi C compiler guide for the 68000, Release 3.5.1

18.8 Directives

All directives start with a single dot character.

The following table summarizes the directives known to the assembler:

Directive Purpose
.section section-name, argument-list Generate code for given section
.equ expr Define a symbol value
.equlab expr Define a symbol value that corresponds to a memory location
.public symbol-list Export symbols to the linker
.pubweak symbol-list Export weak symbols to the linker
.extern symbol-list Import symbol from other module
.require symbol-list Require symbol from other module
.rtmodel symbol, string Define a run-time model attribute
.byte expr-list Emits 8 bit values
.word expr-list Emits 16 bit values
.address expr-list Emits 24 bit values
.long expr-list Emits 32 bit values
.quad expr-list Emits 64 bit values
.ascii text Emits the given string
.asciz text Emits the given string with a terminating 0 (C string)
.fillto address [, value] Fills memory with value
.space count [, value] Fills memory with value
.align value Specifies alignment
.macro parameter-list Defines a macro
.endm Ends a macro definition

A symbol-list is a list of symbols separated by commas. An expr-list is a list of expressions separated by commas.

18.8.1 Directives in detail

.section

The .section directive takes the name of the section as the first argument. It can optionally be followed by a
kind and modifiers to describe the section further.

; A code section named "code" (text)
.section code

; A code section named "code" (text) that are not stored
; in relative order to other "code" section fragments in
; the same compilation unit.

.section code, reorder

; A data section named "storage"
.section storage, data

; A constant area in ROM that are always included in output,
; even when put in a library (provided that something else
; in the compilation unit is imported).

.section table, rodata, root

90 Chapter 18. Assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

.equ

Introduces a new symbol and gives it a value. The symbol appears in the label column and may have an
optional colon after it:

BufNo .equ 7
BufSize: .equ 2 + ContentSize

Any expression can be used as a value, however using external symbols is subject to certain limitations imposed
by relocations in the ELF object file format. In the case of valid expressions with external symbols, the value
will be resolved by the linker.

.equlab

Constants can also be defined with the .equlab directive. This is similar to the .equ directive, with the
difference that it defines a label, which describes a location, rather than a plain number:

MyLocation: .equlab 0xD7

Where this matters is in the interpretation of the debugging information. Labels defined using .equlab are
treated the same as other location labels. The debugger will understand that a symbol defined using .equlab
can be used as a location when generating disassembly listings, while symbols defined using .equ will not be
used for locations in the disassembly listing.

.public

Exports a symbol in the current file and makes in visible to other modules. Symbols are local to the file being
assembled by default.

For shared definitions, an alternative is to put them in an include file and define them using the .equ directive.

.pubweak

A weak symbol is created using the .pubweak directive in a similar way to .public. The difference is that a
weak symbol may exist in multiple copies. Of these potentially multiple copies, one is selected by the linker.
If there is a non-weak symbol among the weak ones, it will be picked by the linker.

Weak symbols serve a couple of purposes. They can be used for library replaceable objects where you can
override a default library object using a non-weak public symbol. They are also useful for tools that generate
assembly code where an identical construct may be generated multiple times, though only one is needed in
the end.

.extern

Imports a symbol that is defined in some other module and make it visible in the current source file.

.require

A required symbol can be specified with the .require directive. It works similar to the .extern directive, with
the difference that you do not need to actually use the symbol in any expression, it is being pulled in by the
linker regardless.

This is mostly of interest when building modular software using libraries.

18.8. Directives 91

Calypsi C compiler guide for the 68000, Release 3.5.1

The typical use of this is that you have initialization code somewhere else built up using section fragments
with the no-reorder property. The no-reorder property ensures that the code fragments appear next to each
other. A section fragment is only active if someone actually refers to it. In this case the .require directive can
be used to refer to it without actually using it. The result is that code which relies on certain initialization
code fragment exists, can request that such code fragment becomes active.

.rtmodel

It is possible to define run-time model attributes using the .rtmodel directive. Such attributes are checked at
link time to ensure object file consistency. The attribute is an identifier and its value is a string:

; activities suitable for winter
.rtmodel season, "winter"

Another source file could specify season to have another value:

; activities suitable for summer
.rtmodel season, "summer"

If you try to link these two modules together will result in an error message describing that run-time model
attribute season has a mismatch.

Source files that do not define the season attribute can be linked with either. It is also possible to use the
special * value which also means it works with either. It essentially says that I know what I am doing and it
will work with whatever value is in this attribute:

; I can work either season
.rtmodel season, "*"

Functionally it equivalent to not having the attribute defined. The difference is more in the eye of the reader,
you have actively considered the attribute and concluded it works with whatever interpretation there may be.

Note: A defined run-time attribute affects the entire compilation unit it appears in. If you need to have
a more narrow scope for some run-time model attribute, you need to break up the source file into smaller
pieces.

.byte

Defines one or more 8 bit values expressed as a list of comma separated expressions.

.word

Defines one or more 16 bit values expressed as a list of comma separated expressions.

.long

Defines one or more 32 bit values expressed as a list of comma separated expressions.

.quad

Defines one or more 64 bit values expressed as a list of comma separated expressions.

92 Chapter 18. Assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

.ascii

Take a string arguments and emit the bytes.

.asciz

Take a string arguments and emit the bytes followed by a terminating zero byte.

.fillto

Takes an address offset and an optional filler value. The address value is relative to the start of the current
section fragment. Emits the filler value until the location counter is equal address offset.

.space

Takes an count value and an optional filler value. Emits count number of filler values in the output. If the
current section is bss, the filler value cannot be non-zero and it only advances the location counter by count.

.align

Emits zero fillers to bring the location counter in alignment with the specified alignment argument. To long
word align a table, use:

.align 4
table .byte 1,2,3,4

Note: The .align directive also have the effect of applying alignment on the section itself in the object file
which forces the linker to place the section according to the alignment. If there are multiple .align directives
with different alignment values in a section, the assembler will determine the overall alignment needed and
emit that as the alignment of the section.

.macro

Defines a macro, see Macro language.

18.9 Relocations

A relocation is an entity stored in the object file format that indicates a location in the generated code that
needs to be altered by the linker. Relocations are generated automatically by the assembler and you do not
normally need to think about them.

A relocation entry contains the location in the generated code, expression to be relocated and which kind of
relocation to perform.

18.9. Relocations 93

Calypsi C compiler guide for the 68000, Release 3.5.1

18.9.1 Relocation operators

In certain contexts some additional prefix operators are available. They can be seen as relocation operators as
they can be used to optionally introduce a relocation.

As they are relocations, they allow the operator to be executed at link time when the final addresses are
known. However, they have the limitation that they must appear at the top level of the expression.

On the 68000 you do not normally need to load parts of relocatable addresses, but in some rare situations
it may be useful. The .word0 and .word2 operators exists. The number refers to the byte offset they would
stored at in memory. Thus .word0 loads the upper 16 bits of value while .word2 loads the low word.

; Take a 16 offset in some imagined 64K page
move.w #.word2 table

Note: Relocation operators have high precedence like other unary prefix operators. If you want to access an
address with an offset, you need to surround the expression by parentheses.

.word0

The .word0 operator gives the upper 16 bits word and is allowed to be resolved at link time.

.word2

The .word2 operator gives the lower 16 bits word and is allowed to be resolved at link time.

.near

This relocation gives the relative address of a symbol in the Near area, which corresponds to base pointer
addressing using register A4. Typically it is given an expression to be resolved at link time. The expression is
an address that is converted to a relative offset to the linker defined Near base symbol NearBaseAddress:

0001 .extern foo
0002 00000000 202c.... move.l (.near (foo+2),a4),d0

18.9.2 Section operators

Section operators makes it possible to get hold of where a section is placed in memory.

Section names must be known to the assembler. If you want to refer to a section that is not used otherwise in
the current assembly source file, simply declare it.

;;; Forward declaration
.section elsewhere

.section code

...

All these operators are resolved by the linker as placement is not known before link time. An error is given if
a section spans multiple memories.

94 Chapter 18. Assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

Table 18.2: Section operators
Operator Precedence Purpose
.sectionStart sectionName 9 The first address of the given section.
.sectionEnd sectionName 9 The last address of the given section.
.sectionSize sectionName 9 The size of the given section.

Note: Section size corresponds to 1 + end - start.

Warning: If you allow the linker to intermix different sections in the same allocation range, these op-
erators will base their values on the first and last section of the given name. Different sections that are
interleaved inside are silently included in the address range given by these operators.

18.10 Macro language

The .macro directive allows you to generate new commands that can create assembler output. A simple
example follows:

foo .macro a, b
.byte \a
.word \b - 1
.long 0
.endm

This creates a new macro named foo which takes two arguments a and b. To use an argument inside the
macro, prefix the parameter name with a backslash \.

18.10.1 Rules for argument substitutions

When looking for argument substitutions, the longest match is favored. This means if you have parameters
called a and aa, substituting the longer name is always tried before shorter names, ignoring the order the
parameters are given. As there is no way to explicitly specify the end of a parameter name inside the body, a
parameter may accidently try to match characters that comes after the parameter. A good rule of thumb is to
make use of space to separate entities whenever possible. This also tends to improve readability.

18.10.2 Use of local labels

Each macro expansion will create a new unique context for local labels inside the macro body. Any previous
local label context is restored after the macro is expanded. Thus, local labels inside a macro will not clash or
interfere with any local labels surrounding the use of the macro.

This also works when using nested macro expansions. If a macro uses another macro inside its body, that
inner macro expansion will have its own private local label context, and the previous context of the outer
macro expansion will be restored when the inner macro has been expanded.

Thus, you are able to use the same label name inside a macro and in in the code that uses it without any
clashes:

18.10. Macro language 95

Calypsi C compiler guide for the 68000, Release 3.5.1

waitreg .macro reg
1$: subq.l #1,\reg

bne 1$
.endm

move.l #100,d0
waitreg d0

1$: move.l #0,d1

Which would create the following list file:

###
#
Calypsi assembler for Motorola 68000 version 3.5.1
04/Jan/2022 21:36:00
Command line: example/macro-local.s -l
#
###

0001 waitreg .macro reg
0002 1$: subq.l #1,\reg
0003 bne 1$
0004 .endm
0005
0006 00000000 203c0000 move.l #100,d0
0006 00000004 0064
0007 waitreg d0

\ 00000006 5380 1$: subq.l #1,d0
\ 00000008 6600fffc bne.w 1$

0008 0000000c 223c0000 1$: move.l #0,d1
0008 00000010 0000

##########################
#
Memory sizes (decimal)
#
##########################

Executable (Text): 18 bytes

96 Chapter 18. Assembler

CHAPTER 19

Running the assembler

The interface to run the compiler is command line based. It is also possible to use the compiler from an IDE.
In this case the IDE interfaces to the assembler using the command line.

19.1 Basic invocation

The assembler is invoked in the following way:

$ as68k() [options] sourcefile [options]

As an example, to assemble a source file with debugging information and a list file, you can use:

$ as68k --debug source.c -l

Command line options are optional arguments that tune the behavior of the assembler. They always start with
a dash character. There are two variants, single letter options (-l to instruct the assembler to create a list file)
starts with a single dash. The other variant is long descriptive options that starts with two dashes.

Some options require an argument. The argument appears after option, they can be separated either by a
space or an equal (=) sign. For single argument options, the argument is allowed to appear without any
separator:

$ as68k -Iinclude source.c -D VERBOSE=2 --list-file=tiny-source.lst

In this case the -I option adds include as a directory to scan for header files. The symbol VERBOSE is defined
in the preprocessor with value 2. A list file with a specific name is also produced.

The order in which the options appear normally do matter, except for the -I option that adds directories to
search for header files. Such directories are searched in the order in which they appear on the command line.

To display the version of the assembler, use -v or --version:

$ as68k --version
Calypsi assembler for Motorola 68000 version 3.5.1

97

Calypsi C compiler guide for the 68000, Release 3.5.1

Command line options are described in Command line options.

19.2 Include search path

Header file inclusion exists in two forms. You can either surround the filename with double quotes or angled
brackets:

#include "myheader.h"
#include <system.h>

The angled form is normally used for system header files while the quoted form is used for application specific
header files.

Note: There are no system header files provided in the installation for the the as68k assembler. The ability
to have angled include files and searching the installation is retained as that is standard behavior of the
preprocessor.

The search order for include files is as follows:

1. Relative to compilation directory (double quote include only)

2. In directories specified in the -I option in the order they appear on the command line

3. The system directory, which is the installation directory

A header file specified in angle brackets are not searched relative to the compilation directory. Otherwise they
behave identical.

The system header file directory is the installation directory.

Note: More precisely the system header file directory is a directory relative to actual cc68k executable file.
This means that if you move an installation to another location in a the file system, it will still be able to find
the correct system header file directory.

19.3 Assembler output

The assembler outputs one or two files, an object file that can be linked with other object files and libraries
by ln68k to produce an executable file, and optionally a list file.

19.3.1 Object file

The object file is in the ELF format with optional DWARF debugging information (if --debug (also named -g)
option is specified).

The object file contains the following components:

• A symbol table

• Relocatable sections with code and data

• Relocations, to allow address values to be altered by the linker when the actual value is know after
placing the section

98 Chapter 19. Running the assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

• Source level debugging information in DWARF format (if the --debug command line option was speci-
fied)

• Vendor specific data, which carries certain additional information specific to the Calypsi C compiler tool
chain. This includes runtime attributes as well as additional information not carried by ELF/DWARF,
but that is used by the linker and debugger.

Note: DWARF debug information for the assembler consists of source line information. In addition the object
file contains a symbol table.

19.3.2 List file

The list file is a text file meant to be shown with a fixed width font. It contains a header that shows assembler,
version, time when it was created and the command line used. The assembly source is shown with corre-
sponding hex machine code. Macro expansions are also shown. Finally there is a summary of the code and
data sizes.

The following example is the setjmp source file from the C runtime library:

.rtmodel version, "1"

.rtmodel cpu, "*"

.public setjmp

.section code

.align 2
setjmp: move.l sp,(a0)+

move.l a5,(a0)+
move.l (sp),(a0)+
moveq.l #0,d0
rts

.section code

.public longjmp

.align 2
longjmp: move.l (a0)+,sp

move.l (a0)+,a5
move.l (a0)+,(sp)
rts

If compiled with the -l option it will produce a list file that looks as follows:

###
#
Calypsi assembler for Motorola 68000 version 3.5.1
04/Jan/2022 21:36:00
Command line: setjmp.s -l
#
###

0001 .rtmodel version, "1"
0002 .rtmodel cpu, "*"
0003
0004
0005 .public setjmp

(continues on next page)

19.3. Assembler output 99

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

0006 .section code
0007 .align 2
0008 00000000 20cf setjmp: move.l sp,(a0)+
0009 00000002 20cd move.l a5,(a0)+
0010 00000004 20d7 move.l (sp),(a0)+
0011 00000006 7000 moveq.l #0,d0
0012 00000008 4e75 rts
0013
0014 .section code
0015 .public longjmp
0016 .align 2
0017 00000000 2e58 longjmp: move.l (a0)+,sp
0018 00000002 2a58 move.l (a0)+,a5
0019 00000004 2e98 move.l (a0)+,(sp)
0020 00000006 4e75 rts

##########################
#
Memory sizes (decimal)
#
##########################

Executable (Text): 18 bytes

19.4 Command line options

This section covers the as68k command line options in detail.

19.4.1 Options overview

If you run the compiler from the command line without any arguments it will complain that the input source
file is missing and then shows a short form help:

$ as68k
Missing: FILE

Usage: as68k [-v|--version] [-o|--output-file OUTPUT-FILE] [-l]
[--list-file LIST-FILE] [-I DIRECTORY] [-D IDENTIFIER]
[-U IDENTIFIER] [-g|--debug] [--rtattr NAME=VALUE] [--weak-symbols]
[--core CORE] [--target TARGET] [--code-model NAME]
[--data-model NAME] FILE

use 'as68k --help' for detailed help

You can request a longer help using the --help option:

$ as68k --help
Calypsi assembler for Motorola 68000 version 3.5.1

Usage: as68k [-v|--version] [-o|--output-file OUTPUT-FILE] [-l]
[--list-file LIST-FILE] [-I DIRECTORY] [-D IDENTIFIER]
[-U IDENTIFIER] [-g|--debug] [--rtattr NAME=VALUE] [--weak-symbols]
[--core CORE] [--target TARGET] [--code-model NAME]

(continues on next page)

100 Chapter 19. Running the assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

[--data-model NAME] FILE
use 'as68k --help' for detailed help

Available options:
-v,--version Display version number
-o,--output-file OUTPUT-FILE

Name of output file
-l Generate a list file, named by appending '.lst' to

input file
--list-file LIST-FILE Generate list file
-I DIRECTORY Include directory
-D IDENTIFIER Predefine a macro
-U IDENTIFIER #undef a predefined macro
-g,--debug Produce debugging information
--rtattr NAME=VALUE Define a run-time attribute (identifier or quoted

string value accepted)
--weak-symbols Make all public symbols entries weak
--core CORE CORE, one of '68000' or '68010' (defaults to '68000')
--target TARGET Target system, one of 'Amiga' or 'Foenix' (defaults

to embedded/ROM use, if omitted)
--code-model NAME code model, one of 'small' or 'large' (defaults to

'large')
--data-model NAME data model, one of 'small', 'large' or 'far-only'

(defaults to 'small')
-h,--help Show this help text

19.4.2 Options in detail

--version, -v

Displays the name and version of the compiler.

--output-file, -o

Use this option to specify the name of the output object file. If not given, the output file is created from the
name of the input file (ignoring any directory path) and sets the file extension to .o. Thus, output files are
written to the compilation directory by default.

You can use this option to alter the name of the output file as well as providing a directory path to it. Such
directory must already exist.

-l

Generate a list file. The name used is the name of the input file (ignoring any directory path) with a .lst file
extension. See also --list-file.

The -l and --list-file options are mutually exclusive, only one of them can be stated on the command line.

--list-file

Generate a list file. The name of the list file is given as argument to this option. See also -l to generate a list
file based on the source filename.

19.4. Command line options 101

Calypsi C compiler guide for the 68000, Release 3.5.1

The -l and --list-file options are mutually exclusive, only one of them can be stated on the command line.

-I

Add a directory to the current include search path. This option can be used multiple times on a command
line. The order in which they appear specifies the search order between the directories.

The system include directory is always added last to the search order list.

-D

Define a preprocessor symbol. This takes an argument with the symbol name and optionally an assignment
value -Dsymbol[=value]. If no value is given, the preprocessor symbol is given the value 1.

-U

Undefine a preprocessor symbol. This takes an argument with the symbol name to be undefined.

--debug

Generate DWARF symbolic debugging information. In order to get debugging information all the way to the
debugger, the linker must also be given this option.

-g

Synonym for --debug.

--rtattr NAME=VALUE

This defines a runtime attribute which is written to the object file. This is used to specify runtime attribute
value that can be used in the linker for checking object file consistency or to select a particular variant of a
function that exists in many variants.

--weak-symbols

Make all public symbols in the object file weak. This is normally not needed, but can be used in certain
situation to make a default implementation of some function in a library. This makes it possible to override
the function with one that is not weak, or fall back to use the default one when no replacement is provided.

--core

This selects the 68000 core to use. This can either be 68000 or 68010. This affects the available instructions.
If not specified it defaults to 68000.

--target

This option is available for symmetry with the compiler. It has the effect of setting the corresponding target
preprocessor macro.

102 Chapter 19. Running the assembler

Calypsi C compiler guide for the 68000, Release 3.5.1

--code-model

This option is available for symmetry with the compiler. It has the effect of setting the corresponding code
model preprocessor macro.

--data-model

This option is available for symmetry with the compiler. It has the effect of setting the corresponding data
model preprocessor macro.

19.4. Command line options 103

Calypsi C compiler guide for the 68000, Release 3.5.1

104 Chapter 19. Running the assembler

CHAPTER 20

Linker

The linker is used to combine object files produced by the C compiler and assembler into an executable.

Object files can also come from libraries. One example of this is the supplied C runtime library.

The linker step for a cross compiler requires more information than what is given to a typical hosted linker.
This is because the target system where the application will run needs to be described as it can look very
different for different targets.

20.1 Running the linker

The interface to run the compiler is command line based. It is also possible to use the compiler from an IDE.
In this case the IDE interfaces to the linker using the command line.

20.1.1 Basic invocation

The linker is invoked in the following way:

$ ln68k [options] [object-files] [library-files] rules-file

The linker requires a rules file to work. This file uses the filename extension .scm and contains information
about the memory of the target system and section placement rules.

Command line options and input files in the command line can appear in any order.

Command line options are optional arguments that tune the behavior of the linker. They always start with
a dash character. There are two variants, single letter options (-l to instruct the linker to create a list file)
starts with a single dash. The other variant is long descriptive options that starts with two dashes.

Some options require an argument. The argument appears after option, they can be separated either by a
space or an equal (=) sign. For single argument options, the argument is allowed to appear without any
separator:

105

Calypsi C compiler guide for the 68000, Release 3.5.1

$ ln68k --debug file.o clib-68000-lc-sd.a placement.scm -o rocket.elf

In this example debugging information is retained in the output executable which is also named rocket.elf.

To display the version of the linker, use -v or --version:

$ ln68k --version
Calypsi linker for Motorola 68000 version 3.5.1

20.2 Memory

When describing the target system the linker uses a concept of memories. A memory is a named entity that
specifies a continuous range of storage locations. A description of a memory have the following attributes:

name The name of the memory. The memory name is the identifier used for a particular memory area

address range The start and end address (inclusive) specify the address range of the memory.

section Here you put the section names you want to bind to the current memory.

placement group This is a group of sections that are placed together in a cloned version of the parent mem-
ory. This allows a memory range (the parent memory) to contain more than one memory with different
type properties.

fill word Value used to fill unused locations in the memory. Defaults to zero, but can specified as (fill 0).

20.3 Linker rules file

The rules file (extension .scm) describes how the section fragments are to be placed in memory. This file serves
three purposes, a) it defines the actual memories; b) it defines which sections to expect; and c) it describes
where the sections can be placed in memory.

20.3.1 Memory rule

A memory rule defines a memory. It also defines which sections (by name) that will go into that memory.
There can be multiple memory rules in a rule file and you will need one for each memory block.

A rules file can look as follows:

(define memories
'((memory flash (address (#x100000 . #x1fffff))

(section (nearcode (#x100000 . #x10a000))
code inear ifar cfar switch data_init_table))

(memory NearRAM (address (#x200000 . #x20ffff))
(section znear near))

(memory RAM (address (#x210000 . #x23ffff))
(section sstack stack zfar far heap))

(memory Vector (address (#x0000 . #x03ff))
(section (reset #x0000)))

(block stack (size #x1000))
(block sstack (size #x200))
(block heap (size #x4000))
(base-address _NearBaseAddress NearRAM #x8000)
))

106 Chapter 20. Linker

Calypsi C compiler guide for the 68000, Release 3.5.1

The use of spacing for indentation here is unimportant to the linker tool, using them makes the file easier to
read. However, the use of characters like the single quote, period and parentheses are important to make the
linker tool able to parse the file correctly.

20.3.2 Section placement

Sections are bound to a specific memory by being mentioned after the section keyword. Placement of a
section may be further restricted as described below.

Free placement

The code and switch sections appear alone (no surrounding parentheses). Sections with these names can be
placed anywhere in the memory they belong to.

Restricted placement

The nearcode section appears with a specified range (#x100000 . #x10a000). If the range is larger than the
size of the section, the section is place somewhere inside the allowed range.

The nearcode section has an address range, which should be a sub-range of the memory range. Thementioned
section can be placed anywhere in this sub-range.

Fixed placement

The reset section is placed at the fixed address 0x00000000 by having only a given address, not a range.

20.3.3 Block rule

Normally sections are created by the compiler or assembler and passed to the linker in the object file. It is
also possible to create a section to represent a memory block in the linker rules file. Such blocks are used for
defining the stack and the heap.

A block rule is defined among the memory rules. It has a name which is its section name and a size:

(define memories
'((memory flash (address (#x8000 . #xffff))

...
(block stack (size #x800))
(block heap (size #x800))

20.3.4 Stack size

The stack keeps track of the dynamic execution state, which includes how to return from function calls and
local variables that are not held in registers. It also provides temporary storage during execution. The size
needed depends on the application and the stack size is defined in the linker rules files using a block rule:

(define memories
'((memory RAM (address (#x210000 . #x23ffff))

(section stack sstack zfar far heap))
(block stack (size #x1000))

(continues on next page)

20.3. Linker rules file 107

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

(block sstack (size #x200))
))

Here the user stack size is set to 1000 hexadecimal (4096 bytes decimal) and is bound to a memory area
named RAM.

The supervisor stack sstack is also needed on the 68000 and is here given the size 200 hexadecimal (512
bytes decimal) and is also bound to a memory area named RAM.

Note: It is possible to override the stack size defined in the linker rules file by using the command line option
--stack-size.

20.3.5 Heap size

The heap is the area from which memory is obtained when using library functions such as malloc(). You only
need to define a heap if your application actually uses functions such as malloc() or calloc(). It is perfectly
fine for an application to run without a heap, and it may in some cases be desirable to do so.

If you decide to use a heap in your application you need to define its size in the linker rules file using a block
rule:

(define memories
'((memory RAM (address (#x210000 . #x23ffff))

(section stack sstack zfar far heap))
(block stack (size #x1000)) ; user stack
(block sstack (size #x200)) ; supervisor stack
(block heap (size #x4000)) ; heap
))

Here the heap size is set to 2000 hexadecimal (8192 bytes decimal) and is bound to a memory area named
RAM. The text following a semi-colon is a comment.

Note: It is possible to override the heap size defined in the linker rules file by using the command line option
--heap-size.

20.3.6 Base address

A base address area is a region of memory that is permanently pointed to by some register in the 68000 CPU.
Using base addressing to access objects is typically more efficient, as it makes use of a more efficient addressing
mode on the 68000.

A base address is defined in the linker rules file using a base-address rule. It works by defining a special
symbol that corresponds to the base address area and tie it to a memory that is the actual area covered by
the base address.

The 68000 defines one base addresses that describes a Near address area which allows for somewhat shorter
instructions compared to full 32 bit addressing.

The A4 address register is reserved to point to this area. As the 68000 has eight address registers and one is
also the stack pointer, it leaves six address registers for general purpose use which is still quite generous.

108 Chapter 20. Linker

Calypsi C compiler guide for the 68000, Release 3.5.1

The Near address area pointed to be the A4 register is a single 64K bytes large memory area. This area is used
in the Small data model for static and global data objects. In addition to this, you also have the stack and
heap which are not allocated from this memory range.

The base address is defined in the linker rules file in the following way:

(define memories
'(...

(memory NearRAM (address (#x200000 . #x20ffff))
(section znear))

...
(base-address _NearBaseAddress NearRAM #x8000)
))

The _NearBaseAddress symbol is tied to the NearRAM memory using an offset of 8000 hexadecimal, meaning
the base address is in the middle of the memory range. This is because the offset from the A4 base register is
a signed 16 bits offset. Here it is given the address 208000 hexadecimal.

In both cases the C startup module takes care of setting up the A4 CPU register before the main() function is
called.

20.3.7 Placement groups

A placement group is a named group of sections inside a memory that share a common property, such as that
they define actual value bits or represent a BSS area. In many output formats such areas need to be separated.
However, it can make sense that a memory that covers a certain address range can have sections with different
such properties.

You can define placement groups in the following way:

(define memories
'(...

(memory near-bank (address (#x10000 . #x1ffff))
(placement-group near-bits (section near cnear))
(placement-group near-nobits (section znear)))

In this example there is a near-bankmemory that contains two placement groups near-bits and near-nobits.
The near-bits contains two sections near and cnear that define actual value bits forthe final application. The
near-nobits placement group has a single section znear which is a zero initialized BSS section.

Note: The use of near and cnear makes sense when compiling for a hosted environment where a writable
near section and a read-only cnear section can be placed next to each other as both are loaded into system
RAM memory. On an embedded system they should go into completely different memories.

Note: The names near-bits and near-nobits have no special meaning to the linker.

20.4 Linker list files

A list file can be generated from the linker using the --list-file (or -l) command line option. The list file
can also contain a cross reference by specifying the --cross-reference option.

20.4. Linker list files 109

Calypsi C compiler guide for the 68000, Release 3.5.1

The list file is a valuable tool if you want to see how much memory your application actually needs. It can
also answer questions about what objects are included from libraries, why they are included and where they
are placed.

This is especially useful if want to understand how your application uses memory and can give insights to
have it may be tuned.

As an example, consider the following example program:

#include <stubs.h>

__task int main () {
return 0;

}

This is intended to be a minimal program, but with debug support to allow the debugger to catch the call to
exit().

If built and linkedwith the standard library and you specify the command line options "-l --cross-reference
--rtattr exit=simplified" you will get a list file which contains something like:

####################
#
Memories summary
#
####################

Name Range Size Used Checksum Largest unallocated

NearRAM 00200000-0020ffff 00010000 0.0% none 00010000
RAM 00210000-0023ffff 00030000 10.7% none 0002ae00
Vector 00000000-000003ff 00000400 0.8% none 000003f8
flash 00100000-001fffff 00100000 0.0% none 000fffb2

####################
#
Sections summary
#
####################

Name Range Size Memory Fragments

heap 00210000-00213fff 00004000 RAM 1
stack 00214000-00214fff 00001000 RAM 1
sstack 00215000-002151ff 00000200 RAM 1
reset 00000000-00000007 00000008 Vector 1
code 00100000-0010004d 0000004e flash 7

################
#
Object files
#
################

Unit Filename Archive

0 main.o -
(continues on next page)

110 Chapter 20. Linker

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

> code 00000004
2 cstartup.o clib-68000-lc-sd.a

picked based on cstartup=normal
> code 0000002e
> reset 00000008

4 simplified_exit.o clib-68000-lc-sd.a
picked based on exit=simplified
> code 00000008

5 debug_exit.o clib-68000-lc-sd.a
picked based on semiHostedStub=1
> code 00000012

6 debug_break.o clib-68000-lc-sd.a
picked based on semiHostedStub=1
> code 00000002

###################
#
Cross reference
#
###################

Section 'heap' placed at address 00210000-00213fff of size 00004000
(linker generated)

Section 'stack' placed at address 00214000-00214fff of size 00001000
(linker generated)

Section 'sstack' placed at address 00215000-002151ff of size 00000200
(linker generated)

__program_root_section in section 'reset'
placed at address 00000000-00000007 of size 00000008
(cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 8)

Defines:
__program_root_section = 00000000

References:
.sectionEnd(sstack)
__program_start in (cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 2)

__program_start in section 'code'
placed at address 00100000-0010001b of size 0000001c
(cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 2)

Defines:
__program_start = 00100000

References:
_NearBaseAddress
.sectionEnd(stack)
__low_level_init in (cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 7)

Referenced from:
__program_root_section (cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 8)

Section 'code' placed at address 0010001c-00100029 of size 0000000e
(cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 6)

References:
exit in (simplified_exit.o (from clib-68000-lc-sd.a) unit 4 section index 2)
main in (main.o unit 0 section index 2)

(continues on next page)

20.4. Linker list files 111

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

_Stub_exit in section 'code'
placed at address 0010002a-0010003b of size 00000012
(debug_exit.o (from clib-68000-lc-sd.a) unit 5 section index 2)

Defines:
_Stub_exit = 0010002a

References:
_DebugBreak in (debug_break.o (from clib-68000-lc-sd.a) unit 6 section index 2)

Referenced from:
exit (simplified_exit.o (from clib-68000-lc-sd.a) unit 4 section index 2)

exit in section 'code' placed at address 0010003c-00100043 of size 00000008
(simplified_exit.o (from clib-68000-lc-sd.a) unit 4 section index 2)

Defines:
exit = 0010003c

References:
_Stub_exit in (debug_exit.o (from clib-68000-lc-sd.a) unit 5 section index 2)

Referenced from:
(cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 6)

main in section 'code' placed at address 00100044-00100047 of size 00000004
(main.o unit 0 section index 2)

Defines:
main = 00100044

Referenced from:
(cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 6)

__low_level_init in section 'code'
placed at address 00100048-0010004b of size 00000004
(cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 7)

Defines:
__low_level_init = 00100048

Referenced from:
__program_start (cstartup.o (from clib-68000-lc-sd.a) unit 2 section index 2)

_DebugBreak in section 'code'
placed at address 0010004c-0010004d of size 00000002
(debug_break.o (from clib-68000-lc-sd.a) unit 6 section index 2)

Defines:
_DebugBreak = 0010004c

Referenced from:
_Stub_exit (debug_exit.o (from clib-68000-lc-sd.a) unit 5 section index 2)

##########################
#
Memory sizes (decimal)
#
##########################

Executable (Text): 86 bytes
Non-initialized : 20992 bytes

The linker list file that can be optionally generated shows how the section fragments are distributed in the
memories and the total size of memory allocated.

The Memories summary part summarizes the different memories used in the application. Here you will see the
size of the memory, how much memory is in use and the largest unallocated continuous memory block. The

112 Chapter 20. Linker

Calypsi C compiler guide for the 68000, Release 3.5.1

checksum column lists the calculated checksum, which may also be included in the image.

The Sections summary part gives an idea of where the sections are located and how many section fragments
there are for each one.

The Object files part shows the object files and what library files they were taken from (if any). It also
shows the sections and overall size contribution.

The Cross reference part is included in the list file if --cross-reference is specified on the command
line. For each section it shows the entry point, the section name, the address range it is placed at and the
size. It then lists defined symbols, what symbols are referenced in other sections and who is referencing this
section. This means you will see full reference information in both directions for every section included in the
application.

Finally the Memory sizes summarizes the total amount of memory in use. Note that the amount of memory
is given in decimal here, otherwise hexadecimal numbers are used in the list file.

20.5 Output formats

Additional executable output format can be selected with the --output-format command line option.

Note: The linker will always produce an ELF output which is the format used by the db68k debugger.

20.5.1 ELF/DWARF

This is the base output format of the executable file. It contains an ELF program image of the executable
application. If you specify --debug all DWARF debugging information sections found in the object files are
passed on to the final executable image. The output file has file extension .elf.

20.5.2 Intel hex

This is the Intel hex file format which contains the output binary expressed in ASCII text form. The output
file has file extension .hex.

20.5.3 Motorola S-record

This is the Motorola S-record, sometimes called SREC. The output binary is expressed in ASCII text form. The
output file has file extension .srec.

20.5.4 Raw

The raw format is the program memory as a raw image file. The output file has file extension .raw.

!linkerOutputFormats

20.5. Output formats 113

Calypsi C compiler guide for the 68000, Release 3.5.1

20.6 More on linker rules

The linker rules file is actually a source file for the Scheme programming language, which is the reason for
the choice of the .scm file extension.

You do not need to be familiar with Scheme to specify linker rules, simply follow the examples to set things
up.

The shown examples are just a Scheme program that consists of a single variable named memories which is
bound to a data structure. The linker runs a Scheme interpreter to read the file and then look for the resulting
memories variable and peek into its contents. This has two implications, a) the syntax of the file is dictated by
Scheme, which is based on s-expressions2; and b) it is possible to use a more elaborate program with Scheme
macros to generate the memory rules.

20.7 Command line options

This section covers the ln68k command line options in detail.

20.7.1 Options overview

If you run the compiler from the command line without any arguments it will complain that it needs some
object files to work with:

$ ln68k
the linker requires some object files to work with (use --help for help)
Terminating due to errors

You can request a longer help using the --help option:

$ ln68k --help
Calypsi linker for Motorola 68000 version 3.5.1

Usage: ln68k [-v|--version] [-o|--output-file OUTPUT-FILE] [-g|--debug]
[--semi-hosted] [--no-data-init-table-section]
[--override IDENTIFIER] [--cross-reference] [--rtattr NAME=VALUE]
[--verbose] [-l] [--list-file LIST-FILE]
[--memories-expression EXPRESSION] [--program-root SYMBOL]
[--program-start SYMBOL] [--copy-initialize SECTION]
[--no-copy-initialize SECTION] [--output-format FORMAT]
[--stack-size SIZE] [--heap-size SIZE] ([--hosted] | [--rom-code])
[--core CORE] [--target TARGET] [FILE...]

use 'ln68k --help' for detailed help

Available options:
-v,--version Display version number
-o,--output-file OUTPUT-FILE

Name of output file
-g,--debug Produce debugging information
--semi-hosted Enable debug stubs for semi-hosting
--no-data-init-table-section

Do not generate any data_init_table section (mainly
useful for assembly projects)

(continues on next page)

2 https://www.wikipedia.org/wiki/S-expression

114 Chapter 20. Linker

https://www.wikipedia.org/wiki/S-expression

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

--override IDENTIFIER Override symbol in archive library (treat it as weak)
--cross-reference Include cross reference and map information in the

list file
--rtattr NAME=VALUE Specify run-time attribute to select specific

alternative from library (e.g. printf=float,
scanf=nofloat)

--verbose Generate more detailed output
-l Generate a list file, defaults to 'ln68k.lst'
--list-file LIST-FILE Generate list file
--memories-expression EXPRESSION

Expression that extracts the list of memory
descriptions from the .scm file, defaults to
'memories'

--program-root SYMBOL Program root point, defaults to
'__program_root_section'

--program-start SYMBOL Program start symbol, defaults to '__program_start'
--copy-initialize SECTION

Override default and initialize this section by
copying

--no-copy-initialize SECTION
Override default and do not initialize this section
by copying

--output-format FORMAT Format, one of 'intel-hex', 's-record', 'raw' or
'pgz'

--stack-size SIZE Stack size override (size normally defined in the
.scm file)

--heap-size SIZE Heap size override (size normally defined in the .scm
file)

--hosted Initialize data sections in place by loading
executable (hosted enviroment)

--rom-code Run from ROM/Flash, initialize data sections by
copying from ROM

--core CORE CORE, one of '68000' or '68010' (defaults to '68000')
--target TARGET Target system, one of 'Amiga' or 'Foenix' (defaults

to embedded/ROM use, if omitted)
-h,--help Show this help text

20.7.2 Options in detail

--output-file, -o

Use this option to specify the name of the output executable file. If not given, the output file is aout with a
file extension based on the format of the file, e.g. aout.elf or aout.hex.

--debug

Merge DWARF symbolic debugging information from the object file and output that in ELF executable file.

-g

Synonym for --debug.

20.7. Command line options 115

Calypsi C compiler guide for the 68000, Release 3.5.1

--semi-hosted

Enable debug stubs for semi-hosting support. The program is linked with stubs for semi-hosting in the de-
bugger. This allows the debugger to support standard I/O on behalf of the target and various other low level
operations, such as capture exit() and implement assert().

--no-data-init-table-section

Do not create any data initialization sections. This is mainly intended for assembly projects, but it can also
be used for C if you do not want any initialization of static data objects to be done.

--override

Treat specified symbol as weak when taken from a library. This can be used if you want to replace a routine
in the library with your own.

--cross-reference

Also include cross reference information in the list file.

--rtattr NAME=VALUE

Use the indicated function when multiple alternatives exists in the library. This can be used to select the
capability of the printf() formatter, scanf() and exit().

You may want to select the smallest variant that has enough functionality for you application.

--verbose

Ask the linker to be more talkative. Mainly useful in cases where you run into errors. This option will generate
a lot more information about the situation.

-l

Generate a list file. The name used is the name of the input file (ignoring any directory path) with a .lst file
extension. See also --list-file.

The -l and --list-file options are mutually exclusive, only one of them can be stated on the command line.

--list-file

Generate a list file. The name of the list file is given as argument to this option. See also -l to generate a list
file based on the source filename.

The -l and --list-file options are mutually exclusive, only one of them can be stated on the command line.

--memories-expression

This is the expression used to extract the memory description after reading a .scm rules file. This is set to
memories by default and that should suffice in almost every situation.

116 Chapter 20. Linker

Calypsi C compiler guide for the 68000, Release 3.5.1

--program-root

This is the root of the application and everything referenced from this section, directly or indirectly is part of
the application.

If you are building a normal C project you should not change this.

--program-start

This symbol defines the first actual executable instruction in the program. This is used as the entry point
which is defined in some output formats.

If you are building a normal C project you should not change this.

--output-format

With this option you specify additional an additional file format of the produced executable application. An
ELF executable is always produced.

--heap-size

The heap size is normally defined in the linker control file (.scm). This option makes it possible to override
the heap size and is useful if you use a common linker control file and want to avoid modifying the file.

Note: The heap is completely removed if you set the size to 0. If the application tries to use the heap in that
situation, the linker will complain that the heap section is undefined.

--stack-size

The stack size is normally defined in the linker control file (.scm). This option makes it possible to override
the stack size and is useful if you use a common linker control file and want to avoid modifying the file.

--hosted

Specifies that you run on some kind of hosted environment. This will cause data object initialization by
copying from ROM to be omitted. Instead it is assumed that the application is loaded into memory and
initialized data objects gets their initializer values by the load action.

--rom-code

This is the opposite of --hosted. Data objects gets initialized by copying from ROM. This is the default and
allows the application to be written to ROM or flash and started by turning the device on.

20.7. Command line options 117

Calypsi C compiler guide for the 68000, Release 3.5.1

--copy-initialize

This option takes a data section name as argument. You can use this option to override the default of whether
the section is initializated by copying or by loading.

This option can be used together with the --hosted option to make an exception for a given data section and
have that initialized by copying. It can be used when the load mechanism is unable to load directly into the
memory area. You can specify this option multiple times.

--no-copy-initialize

This option takes a data section name as argument. It is used to override the default of whether the section
is initializated by copying or by loading. This option mostly exists for symmetry reasons. You can specify this
option multiple times.

--core

Specifies the core used, currently 68000 and 68010 are supported.

--target

Specifies a certain target system. Using this option may affect the setting of --hosted versus --rom-code and
is preferred if the target system used is supported by this option.

118 Chapter 20. Linker

CHAPTER 21

Librarian

With the nlib library tool you can build libraries (sometimes called archives) which is a single file that contains
multiple object files and a symbol index.

21.1 Creating a library

To create a library, simply list all object files (.o extension) and a single output file (.a extension).

$ nlib lib.a obj1.o obj2.o ashfx.o xtoal.o

The created library is normally used as input to the ln68k linker by just specifying it on the command line.
When linking with a library, only those section fragments that are actually used are included in the final
output.

21.2 File format

The file format used is the same as ar on UNIX System V and GNU. The created archive contains an index to
make it faster to select the objects that are needed from the archive.

21.3 Command line options

The only command line options supported are --version and --help.

To display the version of the linker, use -v or --version:

$ ln68k --version
Calypsi linker for Motorola 68000 version 3.5.1

119

Calypsi C compiler guide for the 68000, Release 3.5.1

120 Chapter 21. Librarian

CHAPTER 22

Debugger introduction

The Calypsi tool chain debugger is a source code debugger allows you to see what happens inside programs
while it executes.

The debugger provides both interactive as well as script based control.

The design of the debugger is based on ideas coming from command line debuggers like GDB (GNU project
debugger) and LLDB (LLVM project debugger). If you are familiar with these you will find many similarities.

22.1 Command line debugger

A command line debugger provides powerful commands that are easy to remember and understand. You can
use descriptive commands like step, break and continue rather than a set of bindings to function keys and
other more or less cryptic key bindings. Thanks to short forms and repeat the last command when pressing
the return key, you can do the many common actions and repetitive commands using single or a few key
strokes.

The debugger can also be used with several debugger front ends, such as Visual Studio Code, Eclipse and
Emacs. This is possible thanks to the MI (Machine Interface) protocol designed by the GNU project for this
purpose.

The debugger also provides powerful scripting abilities via the Lua language. You can use Lua to configure
debugging sessions, create your own commands and even make your own debugger plug-ins. This is made
possible by that the complete debugger functional API is provided to Lua. The debugger Lua API even goes
further and provides additional concepts, such as making it possible to define new console commands and
subscribe to notifications on internal debugger events.

In other words, with the Calypsi debugger you get the best from both the command line world and integrated
graphical development environments.

121

Calypsi C compiler guide for the 68000, Release 3.5.1

22.2 Running the debugger

The interface to run the compiler is command line based and you can either use it from a terminal or connect
it to an IDE.

22.2.1 Basic invocation

The debugger is started in the following way:

$ db68k [options] [debug-file] [options]

As everything on the command line is optional you can start the debugger by stating just its name. This will
put you in an interactive debugger session:

$ db68k

Normally you want to specify the application program to debug on the command line:

$ db68k application.elf

Command line options and the application to debug can appear in any order on the command line.

Command line options are optional arguments that tune the behavior of the debugger. They always start with
a dash character. There are two variants, single letter options starts with a single dash. The other variant is
long descriptive options that starts with two dashes.

To display the version of the debugger, use -v or --version:

$ db68k --version
Calypsi debugger for Motorola 68000 version 3.5.1

22.3 Command line options

This section covers the db68k command line options in detail.

22.3.1 Options overview

Use the --help option to display the available command line options.

$ db68k --help
Calypsi debugger for Motorola 68000 version 3.5.1

Usage: db68k [-v|--version] [-i|--interpreter INTERPRETER] [--nh] [--nx]
[-e|--eval-command COMMAND] [-t|--tty TTY] [--batch]
[--logging-enable] [--logging-to-file PATH] [--logging-overwrite]
[--silent] [--extra-memory HEX-RANGE] [--stop-on-program-run]
[--terminate-on-program-exit] [--exit-breakpoint] [--core CORE]
[--target TARGET] [--program-start SYMBOL] [--target-remote DEVICE]
[FILE]

use 'db68k --help' for detailed help

Available options:

(continues on next page)

122 Chapter 22. Debugger introduction

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

-v,--version Display version number
-i,--interpreter INTERPRETER

Select command interpreter, one of 'Console', 'MI' or
'MI2' (defaults to 'Console')

--nh Do not read '~/.db68k'
--nx Do not read any '.db68k' file in any directory
-e,--eval-command COMMAND

Execute a single command (can be specified many
times)

-t,--tty TTY Use TTY for input/output by the program being
debugged

--batch Exit after processing options
--logging-enable Enable logging from start
--logging-to-file PATH Enable logging from start to specified file
--logging-overwrite Enable logging from start and overwrite the file
--silent Generate less messages
--extra-memory HEX-RANGE Additional memory ranges to create (simulator use)
--stop-on-program-run Stop and take control immediately when program is

started
--terminate-on-program-exit

Terminate execution of debugger if debuggee exits
(implies --exit-breakpoint)

--exit-breakpoint Insert a breakpoint at 'exit()' to detect program
termination

--core CORE CORE, one of '68000' or '68010' (defaults to '68000')
--target TARGET Target system, one of 'Amiga' or 'Foenix' (defaults

to embedded/ROM use, if omitted)
--program-start SYMBOL Program start symbol, defaults to '__program_start'
--target-remote DEVICE Use remote device to communicate with target
-h,--help Show this help text

22.3.2 Options in detail

--interpreter, -i

Use this option to specify the interpreter to use. The debugger can execute either with a console interpreter
or a machine interface (MI) interpreter. The console interpreter is suitable for interactive debugger sessions
from the command line, this is also the default. The machine interface interpreter is used when the debugger
is controlled by an IDE.

--eval-command, -e

This specifies a command that is executed before giving control to the interactive session. This option can
appear several times on the command line to allow multiple commands to be specified.

–batch

Terminate the debugger session after all commands specified by --eval-command have been processed. This
is useful when running the debugger in an automated way from some script.

22.3. Command line options 123

Calypsi C compiler guide for the 68000, Release 3.5.1

–tty, -t

Specifies the console tty for the application. If the applications writes to or read from the standard stream,
this provides the tty device where it is done.

If not specified, console output from the application is written to the console interaction. In MI mode such
console output is marked so that the IDE can see that it is stream output from the application.

–logging-enable

Enable logging when debugger starts.

–logging-to-file

Specifies the file to use for logging output.

–logging-overwrite

Specifies whether logging to the file should append to the file or write over any previously existing log file.

–extra-memory

Specifies additional memory areas not part in the application that exists on a simulated target.

Memories in the simulator are normally created based on the memories found in the debug application image.
This option allows additional memory regions to be created.

–stop-on-program-run

When program starts, take control immediately and stop the program. This allows you to debug a program
from the very beginning (before any main() entry is reached) without having to figure out where to set the
breakpoint to do that.

–terminate-on-program-exit

If the application exists, also exit the debugger session. The default is that the debugger notifies that the
application has exited and stays in the debugger session.

–exit-breakpoint

Insert a breakpoint at the exit() function. If you link with debug stubs you do not need to specify this option
as handling of exit is provided by the debug stubs.

--target-remote

Specifies the communications device to be used to connect to a target for debugging. This disables the built-in
simulator and configures the debugger for remote debugging using the gdbserver protocol which allows for
connecting to a remote target, typically used for debugging on real hardware.

124 Chapter 22. Debugger introduction

Calypsi C compiler guide for the 68000, Release 3.5.1

--program-start

This symbol defines the first actual executable instruction in the program. If you are building a normal C
project you should not change this.

--core

Specifies the core used.

--target

Specifies a certain target system.

22.3. Command line options 125

Calypsi C compiler guide for the 68000, Release 3.5.1

126 Chapter 22. Debugger introduction

CHAPTER 23

Console command line

The console interpreter is intended for interactive command line use. In this mode you have access to a
powerful command line interpreter with command completion, command history and command line editing.

Your command line history is also saved between sessions in ~/.db68k/db68k.history.

23.1 Command structure

Commands are made up from one or more space separated words. If a given word is long enough to be a
unique match, it does not need to spelled out in full.

After the command there may be an argument that is specific to the command, e.g. a string, file path or
boolean value.

23.1.1 Command completion

Command completion is available using the TAB key. Pressing TAB directly at the prompt provides a list of all
words that can be used to start a command:

(db68k) <TAB>
b enable n s
break exec-file next set
c file nexti show
cd frame ni si
clear ignore p source
complete info platform step
condition interpreter-exec plug-in stepi
continue interrupt print thread
delete kill pwd tty
directory lua quit
disable maintenance r
disassemble module run
(db68k)

127

Calypsi C compiler guide for the 68000, Release 3.5.1

Pressing TABwill complete the command to the left of the cursor as far as possible. If the word can be partially
completed the first TAB will fill in as far as possible:

(db68k) int<TAB>

Results in:

(db68k) inter

Pressing TAB a second time results in:

(db68k) inter<TAB>
interpreter-exec interrupt
(db68k) inter

23.2 A simple session

To get a feeling for how to run a very simple debugging session here is how it can look.

$ db68k program.elf
Calypsi debugger for 68000
(db68k) b main
breakpoint 1
(db68k) info breakpoints
Num Type Disp Enb Lua/plug-in Address What
1 breakpoint keep y no 0x80f1 main
(db68k)

Note: A command only need entered with enough characters to make it unique. For the command info
breakpoints it is enough to type i b followed by return. This works because the command interpreter takes
all words in account. The command line completer looks at what is to the left of the cursor, so if you type
i<TAB> you will get all command alternatives that start i. To make it complete to info you need to type
inf<TAB> followed by b<TAB>. However, if you type i b<TAB> it will expand to i breakpoints.

To debug the program you need to run (which can be entered as just r) it which starts execution from the
beginning. The program will stop almost immediately as it hits the breakpoint at the beginning of the main()
function.

(db68k) r
running

12 int const cglob_int = 12;
13
14 size_t fossasas;
15

-> 16 int main () {
17 basic_expr(glob_int + 21, 2, 3);
18 int xx = fact(4);
19 int b = vla1(4);
20 int c = struct1(2);

0x80f1 in main() at main.c:16
(db68k)

The breakpoint is hit at address 0x80f1 in the source file main.c:16. Some source lines are shown as context
with the current line indicated.

128 Chapter 23. Console command line

Calypsi C compiler guide for the 68000, Release 3.5.1

You can now perform a couple of single steps:

(db68k) s
13
14 size_t fossasas;
15
16 int main () {

-> 17 basic_expr(glob_int + 21, 2, 3);
18 int xx = fact(4);
19 int b = vla1(4);
20 int c = struct1(2);
21 int d = struct11(2);

0x80f8 in main() at main.c:17
(db68k)

10 int bar (long* p) {
11 return *p + 2;
12 }
13

-> 14 long basic_expr (long a, long a2, int a3) {
15 char cglob_int = 0; // block a variable in global scope
16 if (a) {
17 int b = 10;
18 a = foo(b + cglob_int);

0x8000 in basic_expr() at basic_expr.c:14
(db68k)

You use the step command that can be entered as s. This steps one source line. The second step you simply
press RETURN which repeats the previous command (s in this case).

Each step moves us one line further ahead and the source context shown moves along with it.

The step command steps into functions which can be seen as you entered basic_expr().

You can inspect variables with info locals.

(db68k) info local
(int) a3 = 3
(long) a2 = 2
(long) a = 21
(db68k)

You can see how you got to the current position use backtrace which can also be entered as bt.

(db68k) backtrace
#0 0x8000 in basic_expr() at basic_expr.c:14
#1 0x8137 in main() at main.c:17
(db68k)

Looking at the source code, you realize that you want to stop next at a certain line a bit further down, this
can be done as follows:

(db68k) b basic_expr.c:18
breakpoint 2
(db68k) c
running
program hit breakpoint 2

14 long basic_expr (long a, long a2, int a3) {
15 char cglob_int = 0; // block a variable in global scope
16 if (a) {

(continues on next page)

23.2. A simple session 129

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

17 int b = 10;
-> 18 a = foo(b + cglob_int);

19 a += bar(&a2); // take address of a2, forcing it to stack.
20 }
21 if (a > 2) {
22 // Make the variable in global scope visible

0x8030 in basic_expr() at basic_expr.c:18
(db68k)

The continue command (short form c) is used to resume execution (not run which runs the program from
start).

Lets take a look at the local variables again.

(db68k) info locals
(int) b = 10
(char) cglob_int = 0
(int) a3 = 3
(long) a2 = 2
(long) a - value not available, reason: "a" has no valid value here
(db68k)

This gives two additional variables b and cglob_int which have been added to the local context. At this point
the variable a does not have a value. Looking at the source code you can see that it is going to get a new value
at this line and its last use was two lines up, at line 16. This means the debugger knows about a, but at this
location it does not hold a value that can be examined.

Step over two function calls and inspect the value of a using the print command (which can be entered as
just p):

(db68k) n
15 char cglob_int = 0; // block a variable in global scope
16 if (a) {
17 int b = 10;
18 a = foo(b + cglob_int);

-> 19 a += bar(&a2); // take address of a2, forcing it to stack.
20 }
21 if (a > 2) {
22 // Make the variable in global scope visible
23 extern int const cglob_int;

0x8050 in basic_expr() at basic_expr.c:19
(db68k)

17 int b = 10;
18 a = foo(b + cglob_int);
19 a += bar(&a2); // take address of a2, forcing it to stack.
20 }

-> 21 if (a > 2) {
22 // Make the variable in global scope visible
23 extern int const cglob_int;
24 a = foo(cglob_int);
25 }

0x8082 in basic_expr() at basic_expr.c:21
(db68k) p a
(long) $8 = 8
(db68k)

Now a has a value from the function calls.

130 Chapter 23. Console command line

Calypsi C compiler guide for the 68000, Release 3.5.1

You can see in the code that cglob_int is a local variable of type char. It is actually shadowing a global
variable with the same name that is brought into scope at line 23. If you step to line 24 the global cglob_int
should be visible:

(db68k) n
20 }
21 if (a > 2) {
22 // Make the variable in global scope visible
23 extern int const cglob_int;

-> 24 a = foo(cglob_int);
25 }
26 return a + a3; // a3 alive and on the stack
27 }
28

0x8098 in basic_expr() at basic_expr.c:24
(db68k) p cglob_int
(int const) $9 = 12
(db68k)

The global variable is visible again, with a different value and type.

You realize that you do not need to use the first breakpoint anymore. It can be removed using delete, but
you decide to to disable it using the disable command instead:

(db68k) disable 1
(db68k) info breakpoints
Num Type Disp Enb Lua/plug-in Address What
1 breakpoint keep n no 0x80f1 main

breakpoint already hit 1 time
2 breakpoint keep y no 0x8030 basic_expr.c:18

breakpoint already hit 1 time
(db68k)

Here you can see that the first breakpoint still exists, but it is not enabled (n in the Enb column). You can also
see that the debugger keeps track of some statistics about the breakpoints.

23.2. A simple session 131

Calypsi C compiler guide for the 68000, Release 3.5.1

132 Chapter 23. Console command line

CHAPTER 24

Remote debugging

This chapter describes how to set up debugging to a remote target. In such scenario the debugger runs on
the host machine and connects to and control an application being debugged on actual hardware.

The communications protocol used is the gdbserver protocol which can be implemented as either a small
agent or by a bridge process on a host machine which translates from the gdbsever protocol to the protocol
supported by the hardware.

24.1 Serial port

A simple way to implement target debug support is to put a small debug agent software on the target. The
ubiquitous RS-232 serial port can be used in this case. As typical host computers are no longer equipped with
such ports, you can use a USB to serial converter, such as the FTDI USB-RS232 which typcially comes with a
bare wire end that needs to have a suitable connector soldered on.

Most major operating systems are already equipped with drivers for the FTDI USB-RS232 cable, but if you
choose other cables you may need to install a driver. You may need to ask the vendor of the USB-RS232 cable
for a suitable driver.

24.1.1 Finding the device

On Linux and macOS you can typically find the serial port device in /dev/ttyUSBn, /dev/ttySn or similar.
You can use the dmesg command to query about USB devices:

$ sudo dmesg | grep USB
...
[109191.143623] ftdi_sio 1-1:1.0: FTDI USB Serial Device converter detected
[109191.151619] usb 1-1: FTDI USB Serial Device converter now attached to ttyUSB1

Here you can see that a FTDI serial device is attached to /dev/ttyUSB1.

133

Calypsi C compiler guide for the 68000, Release 3.5.1

Note: If you solder a serial port connector, be careful about which pin numbering. Also note that a DB-25
connector has the receive and transmit pins (number 2 and 3) wired the opposite way commpared to the
DE-9 connector.

24.1.2 Setting the speed

The speed and serial port settings need to be done outside the Calypsi db68k debugger and the settings
depends on how your debug agent is configured.

On Linux and macOS you can use the stty command to set up the serial port:

$ stty 115200 -F /dev/ttyUSB1

If you have the screen utility program installed it can be started with parameters to configure the serial port:

$ screen /dev/ttyUSB1 115200

This will leave the serial port configured when you leave the screen application.

You can leave it by pressing control-A followed by a backslash (c-a \).

Hint: One benefit of using screen is that it can be used to see whether you are properly connected at a
matching speed with the debugger agent. Simply press a key and you should see a packet reply $S13#b7.

24.1.3 Installing the agent

The Calypsi remote debugger agent for the serial port needs to be downloaded, built and executed on the
target hardware. You can download it from https://github.com/hth313/Calypsi-remote-debug.

24.1.4 Starting the debugger

Once the debugger agent is running on the hardware and the communications channel has been configured
you can start the Calypsi db68k debugger using:

$ db68k --target-remote /dev/ttyUSB1 application.elf

134 Chapter 24. Remote debugging

https://github.com/hth313/Calypsi-remote-debug

CHAPTER 25

Visual Studio Code

Visual Studio Code3 is a lightweight but powerful source code editor which runs on multiple platforms.

With the C/C++ for Visual Studio Code extension4 it is possible to use the Calypsi C compiler tool chain in
Visual Studio Code.

This works as Visual Studio Code can be tailored to use different build and debugger tools. The most crucial
part is perhaps the debugger integration which is based on the MI (Machine Interface), which is supported
by the Calypsi db68k debugger.

Visual Studio Code is a good choice for a graphical user interface to Calypsi as it is very actively developed,
lightweight, responsive and highly configurable.

Documenting the full Visual Studio Code is beyond the scope of this guide. Refer to the official Visual Studio
Code documentation5 for detailed information.

Some basics on how to get started is covered here as it may not work entirely as youmay expect from traditional
IDEs.

3 https://code.visualstudio.com/
4 https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools/
5 https://code.visualstudio.com/docs

135

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools/
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs

Calypsi C compiler guide for the 68000, Release 3.5.1

25.1 Installation

Installation is easy to do by downloading it from the official site. After that you can easily update from inside
Visual Studio Code itself.

Note: If you are using Arch Linux or a distribution based on it like Manjaro, you can install VS Code using
its package system. At the moment the community build package is named code, but due to licensing issues
it does not allow installing the vscode-cpptools extension. To make it work you need to install (the Microsoft-
branded installation) visual-studio-code-bin from the AUR.

25.2 Project setup

In contrast to many IDEs you will not find any project setup in the menus.

To create a new project from scratch, use File>Open and create a new folder for your project and then press
Open. You now have an empty project directory.

If you have an existing project, you can just select File>Open and browse to the top folder in that project, the
press Open and your project is loaded.

136 Chapter 25. Visual Studio Code

Calypsi C compiler guide for the 68000, Release 3.5.1

Project specific files are kept in an .vscode directory in your project directory. Initially there are no such files.

25.3 Building

Once you have populated your project and perhaps created a Makefile, you can add a task to build it. Select
Tasks>Configure Tasks... and pick Create tasks.json file from template. Then select Others to get a
tasks.json that you can edit. It may end up looking something like:

{
"version": "0.2.0",
"tasks": [

{
"label": "build",
"type": "shell",
"command": "make -k",
"options": {

"cwd": "${workspaceRoot}/src"
},
"problemMatcher": [

"$gcc"
]

},
{
"label": "clean",
"type": "shell",
"command": "make -k clean",
"problemMatcher": [],
}

]
}

25.4 Running the debugger

The db68k debugger can be used inside Visual Studio Code. For basic use it uses a 68000 simulator and a
memory system that is configured based on the executable image.

25.4.1 Configuration

Before you can start the debugger you need to add a launch configuration.

{
"version": "0.2.0",
"configurations": [

{
"name": "C++ Launch",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceRoot}/src/myproject",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceRoot}/src",

(continues on next page)

25.3. Building 137

Calypsi C compiler guide for the 68000, Release 3.5.1

(continued from previous page)

"environment": [],
"externalConsole": false,
"linux": {

"MIMode": "lldb"
"miDebuggerPath": "/usr/local/bin/db68k",
"launchCompleteCommand": "exec-run",
"setupCommands": []

},
"osx": {

"MIMode": "lldb",
"miDebuggerPath": "/usr/local/bin/db68k",
"launchCompleteCommand": "exec-run",
"setupCommands": []

},
"windows": {

"MIMode": "lldb"
}

},
]

}

There are a couple of things to specify here.

1. You need to specify that you are using /usr/local/bin/db68k as the debugger using miDebuggerPath

2. You also need to tell that you want to use lldb as MIMode6

The launch configuration is a text file that is stored in .vscode/launch.json.

25.4.2 Running the application

Once configured you can run your application using Run >> Start Debugging which is bound to function key
5 (F5).

You may want to insert a breakpoint in your application before you start, or you can take control by interrupt-
ing it once started.

If the debugger windows to show variables, call stack and other information do not show, you can click on
the little bug insect by the side to switch to the debugger view.

6 Even though db68k is much closer to gdb than lldb at the command level, you need to specify lldb as the MI mode. The reason is
that in the gdb mode, Visual Studio Code works around a bug on UNIX style platforms for the MI command -exec-interrupt (which
interrupts execution). The work around is to send a signal to a real UNIX process to interrupt it. As the application being debugged is
not a UNIX process at all, it does not work. Instead you need to use the lldb mode, where the MI command -exec-interrupt works
properly, just as it does with db68k.
Reference https://sourceware.org/bugzilla/show_bug.cgi?id=20035

138 Chapter 25. Visual Studio Code

https://sourceware.org/bugzilla/show_bug.cgi?id=20035

Calypsi C compiler guide for the 68000, Release 3.5.1

25.4. Running the debugger 139

Calypsi C compiler guide for the 68000, Release 3.5.1

140 Chapter 25. Visual Studio Code

CHAPTER 26

Lua scripting

The debugger can be controlled with the means of the Lua language7. Scripting allows you to control and
extend the debugger by the means of writing programs that are executed inside the debugger. In its simplest
form, it allows you to write scripts (basically corresponding to batch file under Windows). More advanced use
allows you to add your own commands to the existing command set. Plug-in like behavior allows you to have
very tight integration with the debugger, making it possible to listen to internal events, control execution and
debugger behavior.

From a more high level perspective, Lua together with the debugger makes it possible to do a lot of different
tasks:

• Perform setup tasks to prepare your debug session.

• Simplifying repetitive tasks.

• Running fully automated tests.

• Extend the functionality, for example to provide introspection of the state and behavior of an operating
system or a protocol stack. Such extended commands are simply added to the command set and share
the same command line interface as any built-in command.

You can use any kind of automation level. Run the whole session under the control of a script, or provide a
set of high level functionality using commands.

26.1 Running a script

To get started, this simple Lua program just displays the registers:

local db = require('db')

print(db.consoleCommand('info registers'))

If saved in script-name.lua (in current directory), you can run the script with:
7 https://www.lua.org/

141

https://www.lua.org/

Calypsi C compiler guide for the 68000, Release 3.5.1

(db) source script-name.lua

Debugger functionality is provided in the db table which is created before the script is started. To access it,
you need to use require. Here we store the debugger table in the local variable db.

Note: Use the --eval-command (can also be used as -e) to invoke a Lua script from the command line, to
make it execute automatically when the debugger starts. The --eval-command works with any command and
can be specified multiple times on the command line.

26.2 Lua environments

Each time you run a script, a new fresh Lua state is created. This means you will start out with standard
and debugger libraries available for import, but not anything else. If you create a global variable, it will not
normally be present the next time you run the script.

However, if your script provides functions to the debugger, for example, by creating new console commands,
the Lua state is as part of the command description. Invoking such command later will result in that the same
state it was created in is used again. In such case, everything is retained, like global variables and closures.
This allows commands to work in a state that has been set up for it, and it allows the command to depend
on other things that has happened in this state before, like previous uses of the same (and other) commands
created by the same Lua script.

A plug-in typically register one or more Lua functions with the debugger to be called under certain circum-
stances. Such functions always execute in same state as they were installed in.

It can be good practice to provide a certain set of related functionality, like a command set and plug-in
behavior in a script of its own. Multiple such plug-ins can be installed, each by its own source invocation,
allowing a plug-in to have its private state shared, while allowing multiple plug-ins to co-exist separated from
each other.

26.3 Command interpreters

The debugger provides two sets of command interpreters, console commands and MI commands.

Console commands are intended for humans, provide command completion when being entered and format-
ted output that is easy to read.

The Machine Interface (or MI for short), was introduced by GDB to provide a more precise and stable com-
mand protocol, intended for (graphical) debugger front-ends. The GDB MI command set is supported by the
debugger, allowing existing graphical debugger front-ends to be used.

Many commands can be accessed from either of these command sets, while some commands are only available
in one of them.

The Lua interface allows both command sets to be used. In addition, adapted MI commands and additional
functionality is also provided.

142 Chapter 26. Lua scripting

Calypsi C compiler guide for the 68000, Release 3.5.1

26.4 Console commands

The db table makes it possible to send console command to the debugger. This will execute a command just
as it is typed at the terminal. The result of the command is passed back as a string to Lua.

If you want to do something with the result other than displaying it (or perhaps just ignoring it), you will
need to parse it. Writing such parsers quickly becomes tedious as the text output is really just intended to be
displayed.

26.5 MI commands

MI commands provide a more precise command interaction intended for debugger front-ends. These com-
mands are in general a much better fit for use from a Lua script. While the commands are still given as strings,
the result is converted to nested Lua tables with basic Lua types such as boolean, numbers and strings.

This greatly simplifies interpreting the result of a call made from Lua to the debugger.

26.6 Adapted MI commands

Adapted MI commands are basically MI commands converted to be a more natural fit for Lua. This is done
in two ways. The actual commands take arguments like any ordinary function in Lua. Return values are just
the value returned or a failure, instead of the MI style result hierarchy.

26.7 Choosing a command set

In most cases you will probably want to use the adapted MI command set as it provides the most natural Lua
experience.

The console and MI command set may be useful if you have familiarity with either or prefer the alternative
output form provided.

26.8 Arrays and Lua

Lua differs from C in that an array index starts at 1. This mismatch between the two languages has some
consequences that can worth knowing when dealing with debugger C expressions from Lua.

To make it easier to work with C expressions you can use the behavior of C and start array results with 0
also in Lua. The ipairs iterator function in Lua assumes (naturally) that you are a Lua programmer and start
arrays with 1 which means that iterations of array elements this way will skip the element at index 0.

The alternative would be to shift the index in expressions, but that would probably be even more confusing
and error-prone. You are after all dealing with C expressions.

26.9 Debugger API

db:stepInstruction()
Single step once at instruction level. This function will quickly return an indication of whether it was

26.4. Console commands 143

Calypsi C compiler guide for the 68000, Release 3.5.1

successful in starting the target. Actual progress of execution will be posted as notifications

Corresponding MI instruction is -exec-step-instrucion.

144 Chapter 26. Lua scripting

CHAPTER 27

Lua data types reference

In this section we go through the various data structures that are used. Anything more complicated than a
boolean, number or string, are represented by a table.

27.1 Address

Internally the debugger uses addresses which consists of triples. An address has a numeric value, a memory
type and optionally a bank number. Addresses are represented in Lua by a table with the following fields:

Table 27.1: Address type
field type description
formatted string The complete print value of the address location.
address integer The raw address bits of the location.
memory string The kind of the memory the address points to, can typically be

code or data (string).
bank integer The bank number, or nil if this address location does not have

any bank associated with it.

The formatted field is set when the value is returned to Lua. If you provide an address as an argument to a
function call in the API, you do not need to provide a formatted field.

27.2 Adapted MI functions

Many functions provided in Lua are actually adapted from the set ofmachine interface (MI) commands, which
is the commands that are passed between a debugger front end (such as Eclipse or VS Code) and the debugger.

The functions are available in the db table and the Lua interface takes care of translating the arguments for
the function and passing it on to the debugger command handler.

145

Calypsi C compiler guide for the 68000, Release 3.5.1

Results are passed back and are translated to Lua. As the underlying mechanism is a command protocol, the
result table is a little bit more elaborate than what first be guessed.

At top level a result have the following fields:

field type description
class string The result class, for many commands this will be done. An error is given as error.

A complete list is provided below.
value inte-

ger
This is the actual result, which depends on the actual function called.

type string The type of the reply. For function calls, this will be result.

146 Chapter 27. Lua data types reference

CHAPTER 28

Lua function reference

In this section we cover the functions provided by the debugger module. They are grouped in families, so that
you will find commands that are related together.

28.1 Execution

28.1.1 db:stepInstruction()

Single step once at instruction level.

The result will only tell if the target was notified to start. An error result will indicate that the target is not
believed to be in such a state that it can start.

To monitor progress and result of execution, you need to listen to notifications.

28.2 Breakpoint

28.2.1 db:breakDelete(number(s))

Remove one or more breakpoints.

The argument gives the number of the breakpoint(s) to remove. It can be either an integer or an array or
integers.

28.2.2 db:breakInsert(location, &callBack)

Insert a new breakpoint.

The db table in the first argument may contain attributes to the breakpoint:

147

Calypsi C compiler guide for the 68000, Release 3.5.1

Table 28.1: Breakpoint attributes
field type description
temporary boolean set a temporary (one-time) breakpoint
hardware boolean this should use a hardware breakpoint
pending boolean allow pending breakpoint
disabled boolean start with the breakpoint disabled
tracePoint boolean this is a tracepoint
condition expr set a conditional expression
ignore integer set initial ignore count
thread integer breakpoint is valid for given thread

The second argument describes the location of the breakpoint, it can be:

Table 28.2: Breakpoint location
kind type
address table an address table
file and line table { file : string, line : integer
function string function name or symbol

The third if present should be a Lua function. This function will be called as followed when the breakpoint is
hit:

cont = callBack(object, breakpointNumber)

The first argument in the callBack is the object table that was used when the breakpoint was created. The
second argument is just the breakpoint number. If the return value is a boolean false, then the breakpoint is
not taken and execution resumes. This is done silently, there is no feedback about that we made a temporary
stop to any user interface.

The call back will take place from the execution thread and it will block execution while it is running, so if
you plan on continuing it is recommended that you return as quickly as you can.

If you are stopping, you can either do processing in the call back, or detect that we stop from the flow of
notification. Keep in mind that if you do processing here, the user will not see any feedback that we stopped
until you return.

148 Chapter 28. Lua function reference

Index

Non-alphabetical
_NearBaseAddress

symbol, 109

A
address space

syntax, 15
address spaces, 14, 15
.align

directive, 93
alignment, 46

of sections, 87
allocated memory, 109
Amiga

interrupt, 49
Arch Linux

installation, 4
uninstalling, 4

archive, 118
.ascii

directive, 92
.asciz

directive, 93
assembler, 85

constants, 88
directives, 89
expressions, 88
invocation, 97
labels, 86
local labels, 89
numbers, 88
operators, 88
symbols, 86
syntax, 85

assembly language, 85
attribute

far, 48
interrupt, 49
intrinsic, 50
near, 48
task, 50

attributes, 47
auto variables, 13

B
back quoted symbols, 86
base address

definition, 108

bit fields, 40
volatile, 45

block
section in linker, 107

bool type, 39
bss section, 63, 87
built-in, 53
built-in functions, 53
.byte

directive, 92
byte order

macros, 60

C
C language, 7, 20
C library, 68
C startup

replacing, 74
calling convention, 82
cfar

section, 17, 64
character type, 40
code

section, 17, 64, 65
command

structure, 127
command completion, 127
comments

assembly, 85
compiler

diagnostics, 30
errors, 30
invocation, 27
list file, 29
options, 31
warnings, 30

conditional assembly, 86
const

qualifier, 45
constants

assembler, 88
context

program, 128
conversions

implicit, 24
core selection

option, 36, 102
cross call

optimization, 80

149

Calypsi C compiler guide for the 68000, Release 3.5.1

option, 35
cross compiler, 7
cross reference, 109

D
data initialization, 19

omitting, 116
data model

far-only, 10
large, 10
small, 10

data pointer, 41
size, 41

data section, 63, 87
initialization, 64

data_init_table
section, 17, 64, 66

Debian
installation, 3
uninstalling, 4

debug library, 68
debugger

command interpreter, 123
logging, 124
starting, 121

debugging information
option, 34, 102

devices
supported, 7

diagnostics
compiler, 30
pragma directive, 52

directive
.align, 93
.ascii, 92
.asciz, 93
.byte, 92
.equ, 90, 91
.equlab, 91
.extern, 91
.fillto, 93
.long, 92
.macro, 93, 95
.public, 91
.quad, 92
run-time model, 92
.section, 86, 90
.space, 93
.word, 92

directives
assembler, 89

distribution
installation, 2

DWARF
output, 113

E
ELF

output, 113
endian

macros, 60
enumeration type, 43
.equ directive, 90, 91
.equlab directive, 91
error

pragma directive, 52
errors

compiler, 30
internal, 30

exit, 73
expressions

assembler, 88
extended attributes, 47
.extern directive, 91

F
far

attribute, 48
section, 17, 64

far-only
data model, 10

FAT, 109
file extensions, 7
file inclusion, 86
file streams

initialization, 19
fill word, 106
.fillto

directive, 93
floating point

precision, 41
setting, 10
types, 10, 40

floating point types, 24
Foenix

target, 36, 102
formatter

printf, 73
scanf, 73

function address table, 109
function pointer

size, 41
function prototypes, 24
functions, 53

G
global variables, 14

H
headers

search path, 28
heap

initialization, 19
specify size, 108

I
IDE

Visual Studio Code, 134
IEEE 754, 40
include files, 86
include search

option, 33, 102
include search path, 28
index type

pointer, 41
initialization

of data, 19, 64
inlining

optimization, 78
inlining functions

not inlined, 80
option, 35

installation, 2

150 Index

Calypsi C compiler guide for the 68000, Release 3.5.1

Arch Linux, 4
Debian, 3
Linux, 3, 4
macOS, 3
Manjaro, 4
multiple, 5
multiple versions, 5
Ubuntu, 3
Windows, 5

integer types, 23, 39
Intel hex

output, 113
internal errors, 30
interrupt

Amiga style, 49
attribute, 49
vector, 49

intrinsic, 53
attribute, 50

intrinsic functions, 53
intrinsics, 11
invocation

assembler, 97
compiler, 27

izpage
section, 66

K
keywords

address spaces, 15

L
labels

assembler, 86
global, 91
location counter, 89
weak, 91

large
data model, 10

librarian, 118
library

files, 68
linker, 103

cross reference, 109
linker rules, 19, 106
Linux

installation, 3, 4
uninstalling, 4

list file
compiler, 29
option, 33, 101

list files
linker, 109

load address
option, 118

local labels
assembler, 89

local labels inside macro, 95
local variables, 13
location counter, 89
.long

directive, 92
Lua, 139
lua

adapted MI functions, 145
address type, 145
breakpoints, 147

execution control, 147

M
macOS

installation, 3
uninstalling, 3

.macro, 95
directive, 93

macro, 95
local label, 95

macro definition
option, 34, 102

macro definitions
showing, 34

macro language, 95
macros

byte order, 60
endian, 60
predefined, 59
version, 60

Manjaro
installation, 4
uninstalling, 4

memory, 106
address range, 106
fill, 106
name, 106
placement group, 109
rule linking, 106
size, 109

message
pragma directive, 52

Motorola S-record
output, 113

N
.near

relocation operator, 94
near

attribute, 48
base address, 108
section, 17, 64, 65

no-init
section, 63

numbers
assembler, 88

O
omit data initialization, 116
operator

.sectionEnd, 94

.sectionSize, 94

.sectionStart, 94
operators

assembler, 88
relocation, 93
section, 94

optimization
cross call, 80
inlining, 78

optimizer, 10
option, 34
tuning, 35

option
core selection, 36, 102
cross call, 35

Index 151

Calypsi C compiler guide for the 68000, Release 3.5.1

debugging information, 34, 102
function inlining, 35
include search, 33, 102
list file, 33, 101
load address, 118
macro definition, 34, 102
optimizer level, 34
output file, 33, 101
run-time attribute, 35, 102
signed char, 34
size of double, 34
switch control, 36
target selection, 36, 102, 118
unsigned char, 34
vector sections, 36
version, 33, 101
weak symbols, 35, 102

options
compiler, 31

output
DWARF, 113
ELF, 113
Intel hex, 113
Motorola S, 113
raw, 113
SREC, 113

output file
option, 33, 101

output format
ELF/DWARF, 113
Intel hex, 113
Motorola S-record, 113
raw, 113

P
placement control, 19
placement group

memory, 109
pointer

index type, 41
types, 41

pointers, 15
pragma directive

diagnostics, 52
error, 52
message, 52
require, 53
section, 52
warning, 52

precision
floating point, 41

predefined
macros, 59

preprocess, 34
preprocessor, 58
print formatter, 73
program context, 128
prototypes

function, 24
ptrdiff_t type, 42
.public directive, 91

Q
.quad

directive, 92
quoted symbols, 86

R
raw

output, 113
read only

data section, 87
read-only

section, 63
record type, 42
relocation operators, 93
relocations, 93
require

pragma directive, 53
required symbols, 91
rodata section, 63
rules for linking, 106
run-time attribute

option, 35, 102
runtime library, 68
run-time model directive, 92

S
scan formatter, 73
search path

headers, 28
.section

directive, 86
section, 17, 86

alignment, 87
block, 107
bss, 63, 87
cfar, 17, 64
code, 17, 64, 65
data, 63, 64, 87
data_init_table, 17, 64, 66
directive, 90
far, 17, 64
fragments, 86, 109
izpage, 66
kinds, 87
modifiers, 87
near, 17, 64, 65
no-init, 63
operators, 94
placement, 19, 106, 107
pragma directive, 52
read only data, 87
read-only, 63
stack, 107
switch, 17, 64, 66
text, 63, 87
types, 63
zfar, 17, 64, 65
znear, 17, 64, 65
zzpage, 65

.section directive, 90

.sectionEnd
operator, 94

.sectionSize
operator, 94

.sectionStart
operator, 94

semi-hosted
library stubs, 68

sequence point, 44
signed char

option, 34
simulated I/O, 68

152 Index

Calypsi C compiler guide for the 68000, Release 3.5.1

size
of double, 10
of float, 10

size of double
option, 34

size_t type, 42
small

data model, 10
.space

directive, 93
SREC

output, 113
ssize_t type, 42
stack

section, 107
size considerations, 20
specify size, 107
usage, 20

startup, 73
custom, 74

static variables, 14
streams, 72
structure type, 42
stub interface, 68
supported devices, 7
switch

section, 17, 64, 66
switch control

option, 36
symbol

_NearBaseAddress, 109
symbols

assembler, 86
global, 91
quoted, 86
required, 91
syntax, 86
weak, 91

syntax
assembler, 85

system startup, 73

T
target

Foenix, 36, 102
option, 36, 102

target selection
option, 36, 102, 118

task
attribute, 50

termination
simplification, 73

text section, 63, 87
time

functions; date; functions, 75
tiny

base address, 108
type

enumeration, 43
ptrdiff_t, 42
size_t, 42
ssize_t, 42
structure, 42
union, 42

type definitions, 45
type qualifier, 15
type qualifiers, 43

typedef, 45
types

bool, 39
character, 40
integer, 39
wide character, 40

U
Ubuntu

installation, 3
uninstalling, 4

uninstalling
Arch Linux, 4
Debian, 4
Linux, 4
macOS, 3
Manjaro, 4
Ubuntu, 4
Windows, 5

union type, 42
unsigned char

option, 34
used memory, 109

V
variables

auto, 13
dynamic, 14
global, 14
local, 13
static, 14

vector sections
option, 36

version
macros, 60
option, 33, 101

Visual Studio Code, 134
volatile

access size, 44
volatile objects, 43

W
warning

pragma directive, 52
warnings

compiler, 30
controlling, 30

weak symbols, 91
option, 35, 102

wide character type, 40
Windows

installation, 5
uninstalling, 5

.word
directive, 92

.word0
relocation operator, 94

.word2
relocation operator, 94

Z
zfar

section, 17, 64, 65
znear

section, 17, 64, 65
zzpage

section, 65

Index 153

	Introduction
	Using this guide
	Copyright notice
	Disclaimer

	Installation
	macOS
	Debian Linux
	Arch and Manjaro Linux
	Windows
	Using multiple versions

	Getting started
	C language
	File extensions
	Building applications
	Configuring
	Low level control

	Data storage
	Ways to store data
	Address spaces

	Placing code and data
	Sections
	Data initialization
	Stack

	C language
	Overview
	Extensions

	Efficient coding
	Data types
	Use prototypes
	Use tables

	Running the compiler
	Basic invocation
	Include search path
	Compiler output
	Diagnostics
	Command line options

	Data representation
	Basic types
	Structure types
	Union types
	Enumeration types
	Type qualifiers
	Type definitions
	Alignment

	Extended attributes
	Overview
	Using attributes
	Attribute reference

	Pragma directives
	Pragma directives reference

	Intrinsic functions
	Intrinsic functions reference

	Preprocessor
	Overview

	Section reference
	Section overview
	Sections used by the compiler

	Runtime library
	Design considerations
	Using the library
	Provided library files
	Stub interface
	Examine use of library
	Library on a diet
	System startup
	Time and date

	The optimizer
	Overview
	Function inlining
	Cross call

	Assembly language interface
	Intrinsic functions
	Assembly functions
	Calling convention

	Assembler
	Overview
	Syntax
	Sections
	Expressions
	Numeric constants
	Location counter
	Local labels
	Directives
	Relocations
	Macro language

	Running the assembler
	Basic invocation
	Include search path
	Assembler output
	Command line options

	Linker
	Running the linker
	Memory
	Linker rules file
	Linker list files
	Output formats
	More on linker rules
	Command line options

	Librarian
	Creating a library
	File format
	Command line options

	Debugger introduction
	Command line debugger
	Running the debugger
	Command line options

	Console command line
	Command structure
	A simple session

	Remote debugging
	Serial port

	Visual Studio Code
	Installation
	Project setup
	Building
	Running the debugger

	Lua scripting
	Running a script
	Lua environments
	Command interpreters
	Console commands
	MI commands
	Adapted MI commands
	Choosing a command set
	Arrays and Lua
	Debugger API

	Lua data types reference
	Address
	Adapted MI functions

	Lua function reference
	Execution
	Breakpoint

	Index

